Skip to main content

Light-Responsive Promoters

  • Protocol
  • First Online:
Book cover Mammalian Synthetic Promoters

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1651))

Abstract

Recent advances in the development of light-inducible transgene expression systems have overcome many inherent drawbacks of conventional chemically regulated systems. The latest generation of those light-regulated systems that are specifically responsive to different wavelengths allows spatiotemporal control of gene expression in a so far unprecedented manner.

In this chapter, we first describe the available light-inducible gene expression systems compatible with mammalian cells and explain their underlying mechanisms. Afterward, we give a detailed protocol for the implementation of a UVB light-inducible expression system in mammalian cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Ausländer S, Fussenegger M (2013) From gene switches to mammalian designer cells: present and future prospects. Trends Biotechnol 31(3):155–168. doi:10.1016/j.tibtech.2012.11.006

    Article  CAS  PubMed  Google Scholar 

  2. Weber W, Fussenegger M (2012) Emerging biomedical applications of synthetic biology. Nat Rev Genet 13(1):21–35. doi:10.1038/nrg3094

    Article  Google Scholar 

  3. Hörner M, Weber W (2012) Molecular switches in animal cells. FEBS Lett 586(15):2084–2096. doi:10.1016/j.febslet.2012.02.032

    Article  CAS  PubMed  Google Scholar 

  4. Crefcoeur RP, Yin R, Ulm R, Halazonetis TD (2013) Ultraviolet-B-mediated induction of protein-protein interactions in mammalian cells. Nat Commun 4:1779. doi:10.1038/ncomms2800

  5. Müller K, Engesser R, Schulz S, Steinberg T, Tomakidi P, Weber CC, Ulm R, Timmer J, Zurbriggen MD, Weber W (2013) Multi-chromatic control of mammalian gene expression and signaling. Nucleic Acids Res 41(12):e124. doi:10.1093/nar/gkt340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Müller K, Engesser R, Timmer J, Zurbriggen MD, Weber W (2014) Orthogonal optogenetic triple-gene control in mammalian cell s. ACS Synth Biol 3(11):796–801. doi:10.1021/sb500305v

    Article  Google Scholar 

  7. Nihongaki Y, Yamamoto S, Kawano F, Suzuki H, Sato M (2015) CRISPR-Cas9-based photoactivatable transcription system. Chem Biol 22(2):169–174. doi:10.1016/j.chembiol.2014.12.011

    Article  CAS  PubMed  Google Scholar 

  8. Polstein LR, Gersbach CA (2015) A light-inducible CRISPR-Cas9 system for control of endogenous gene activation. Nat Chem Biol 11(3):198–200. doi:10.1038/nchembio.1753

    Article  CAS  Google Scholar 

  9. Konermann S, Brigham MD, Trevino AE, Hsu PD, Heidenreich M, Cong L, Platt RJ, Scott DA, Church GM, Zhang F (2013) Optical control of mammalian endogenous transcription and epigenetic states. Nature 500(7463):472–476. doi:10.1038/nature12466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yazawa M, Sadaghiani AM, Hsueh B, Dolmetsch RE (2009) Induction of protein-protein interactions in live cells using light. Nat Biotechnol 27(10):941–945. doi:10.1038/nbt.1569

    Article  CAS  PubMed  Google Scholar 

  11. Polstein LR, Gersbach CA (2012) Light-inducible spatiotemporal control of gene activation by customizable zinc finger transcription factors. J Am Chem Soc 134(40):16480–16483. doi:10.1021/ja3065667

    Article  CAS  Google Scholar 

  12. Müller K, Zurbriggen MD, Weber W (2014) Control of gene expression using a red- and far-red light-responsive bi-stable toggle switch. Nat Protoc 9(3):622–632. doi:10.1038/nprot.2014.038

    Article  CAS  PubMed  Google Scholar 

  13. Wang X, Chen X, Yang Y (2012) Spatiotemporal control of gene expression by a light-switchable transgene system. Nat Methods 9(3):266–269. doi:10.1038/nmeth.1892

    Article  CAS  PubMed  Google Scholar 

  14. Chen X, Li T, Wang X, Yang Y (2015) A light-switchable bidirectional expression module allowing simultaneous regulation of multiple genes. Biochem Biophys Res Commun 465(4):769–776. doi:10.1016/j.bbrc.2015.08.085

    Article  CAS  PubMed  Google Scholar 

  15. Motta-Mena LB, Reade A, Mallory MJ, Glantz S, Weiner OD, Lynch KW, Gardner KH (2014) An optogenetic gene expression system with rapid activation and deactivation kinetics. Nat Chem Biol 10(3):196–202. doi:10.1038/nchembio.1430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Niopek D, Benzinger D, Roensch J, Draebing T, Wehler P, Eils R, Di Ventura B (2014) Engineering light-inducible nuclear localization signals for precise spatiotemporal control of protein dynamics in living cells. Nat Commun 5:4404. doi:10.1038/ncomms5404

  17. Beyer HM, Juillot S, Herbst K, Samodelov SL, Müller K, Schamel WW, Römer W, Schäfer E, Nagy F, Strähle U, Weber W, Zurbriggen MD (2015) Red light-regulated reversible nuclear localization of proteins in mammalian cel ls and Zebrafish. ACS Synth Biol 4(9):951–958. doi:10.1021/acssynbio.5b00004

    Article  CAS  Google Scholar 

  18. Ye H, Daoud-El Baba M, Peng RW, Fussenegger M (2011) A synthetic optogenetic transcription device enhances blood-glucose homeostasis in mice. Science 332(6037):1565–1568. doi:10.1126/science.1203535

    Article  CAS  PubMed  Google Scholar 

  19. Folcher M, Oesterle S, Zwicky K, Thekkottil T, Heymoz J, Hohmann M, Christen M, Daoud El-Baba M, Buchmann P, Fussenegger M (2014) Mind-controlled transgene expression by a wireless-powered optogenetic designer cell implant. Nat Commun 5:5392. doi:10.1038/ncomms6392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wend S, Wagner HJ, Müller K, Zurbriggen MD, Weber W, Radziwill G (2014) Optogenetic control of protein kinase activity in mammalian cells. ACS Synth Biol 3(5):280–285. doi:10.1021/sb400090s

    Article  Google Scholar 

  21. Schlatter S, Rimann M, Kelm J, Fussenegger M (2002) SAMY, a novel mammalian reporter gene derived from Bacillus stearothermophilus Alpha-amylase. Gene 282(1–2):19–31. doi:10.1074/jbc.273.52.34970

    Article  CAS  PubMed  Google Scholar 

  22. Kain SR, Ganguly S (2001) Overview of genetic reporter systems. Curr Protoc Mol Biol Chapter 9:Unit9.6. doi:10.1002/0471142727.mb0906s36

    Article  CAS  PubMed  Google Scholar 

  23. Li X, Zhao X, Fang Y, Jiang X, Duong T, Fan C, Huang CC, Kain SR (1998) Generation of destabilized green fluorescent protein as a transcription reporter. J Biol Chem 273(52):34970–34975. doi:10.1074/jbc.273.52.34970

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Excellence Initiative of the German Federal and State Governments (EXC-294 and GRC-4) and the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement n° 259043-CompBioMat.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfried Weber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Hörner, M., Müller, K., Weber, W. (2017). Light-Responsive Promoters. In: Gould, D. (eds) Mammalian Synthetic Promoters. Methods in Molecular Biology, vol 1651. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-7223-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7223-4_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-7221-0

  • Online ISBN: 978-1-4939-7223-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics