Skip to main content

Assessment of Specificity of an Adenovirus Targeted to HER3/4

  • Protocol
  • First Online:
Book cover ErbB Receptor Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1652))

  • 2654 Accesses

Abstract

Gene therapy with viral vectors, such as adenovirus (Ad), targeted to the human epidermal growth factor receptors 3 and 4 (HER3/4) are potentially useful for cancer therapy. Testing the expression of a reporter gene from these viruses in target cells is essential to determine functionality of the targeted virus. A competition assay with a relevant ligand (heregulin, HRG) can provide convincing evidence that blocking binding to the HER3/4 receptor results in decreased reporter gene expression. Labeling individual viruses with a fluorescent molecule allows examination of the targeted virus in specific steps in the infection. Virus internalization into cell lines can be determined using antibody-labeled receptors, and the virus colocalization with receptors can also be visualized. Characterization of a targeted virus in this fashion is important to demonstrate that the targeting of the virus functions in an expected manner, and provides support for larger-scale testing of the virus. Information acquired in these experiments may also be useful to inform and improve on the design of future targeted viruses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mujoo K, Choi B-K, Huang Z, Zhang N, An Z (2014) Regulation of ERBB3/HER3 signaling in cancer. Oncotarget 5(21):10222–10236

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sithanandam G, Anderson LM (2008) The ERBB3 receptor in cancer and cancer gene therapy. Cancer Gene Ther 15(7):413–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sergina NV, Moasser MM (2007) The HER family and cancer: emerging molecular mechanisms and therapeutic targets. Trends Mol Med 13(12):527–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Koutras AK, Fountzilas G, Kalogeras KT, Starakis I, Iconomou G, Kalofonos HP (2010) The upgraded role of HER3 and HER4 receptors in breast cancer. Crit Rev Oncol Hematol 74(2):73–78

    Article  PubMed  Google Scholar 

  5. Sassen A, Diermeier-Daucher S, Sieben M, Ortmann O, Hofstaedter F, Schwarz S et al (2009) Presence of HER4 associates with increased sensitivity to Herceptin™ in patients with metastatic breast cancer. Breast Cancer Res 11(4):R50

    Article  PubMed  PubMed Central  Google Scholar 

  6. Okazaki S, Nakatani F, Masuko K, Tsuchihashi K, Ueda S, Masuko T et al (2016) Development of an ErbB4 monoclonal antibody that blocks neuregulin-1-induced ErbB4 activation in cancer cells. Biochem Biophys Res Commun 470(1):239–244

    Article  CAS  PubMed  Google Scholar 

  7. MacLeod SH, Elgadi MM, Bossi G, Sankar U, Pisio A, Agopsowicz K et al (2012) HER3 targeting of adenovirus by fiber modification increases infection of breast cancer cells in vitro, but not following intratumoral injection in mice. Cancer Gene Ther 19(12):888–898

    Article  CAS  PubMed  Google Scholar 

  8. Wiley J and Sons (2016) Vectors used in gene therapy clinical trials. http://www.wiley.com/legacy/wileychi/genmed/clinical/. Accessed 22 Jun 2016

  9. Berk AJ (2013) Adenoviridae. In: Knipe DM, Howley P (eds) Fields virology, 6th edn. Lipincott, Williams & Wilkins, Philadelphia, p 2664

    Google Scholar 

  10. Wold WSM, Toth K (2013) Adenovirus vectors for gene therapy, vaccination and cancer gene therapy. Curr Gene Ther 13(6):421–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bett AJ, Haddara W, Prevec L, Graham FL (1994) An efficient and flexible system for construction of adenovirus vectors with insertions or deletions in early regions 1 and 3. Proc Natl Acad Sci U S A 91(19):8802–8806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Danthinne X, Imperiale MJ (2000) Production of first generation adenovirus vectors: a review. Gene Ther 7(20):1707–1714

    Article  CAS  PubMed  Google Scholar 

  13. Yoon A-R, Hong J, Kim SW, Yun C-O (2016) Redirecting adenovirus tropism by genetic, chemical, and mechanical modification of the adenovirus surface for cancer gene therapy. Expert Opin Drug Deliv 13(6):843–858

    Google Scholar 

  14. Kasala D, Choi J-W, Kim SW, Yun C-O (2014) Utilizing adenovirus vectors for gene delivery in cancer. Expert Opin Drug Deliv 11(3):379–392

    Article  CAS  PubMed  Google Scholar 

  15. Capasso C, Garofalo M, Hirvinen M, Cerullo V (2014) The evolution of adenoviral vectors through genetic and chemical surface modifications. Viruses 6(2):832–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chaurasiya S, Hew P, Crosley P, Sharon D, Potts K, Agopsowicz K et al (2016) Breast cancer gene therapy using an adenovirus encoding human IL-2 under control of mammaglobin promoter/enhancer sequences. Cancer Gene Ther 23(6):178–187

    Article  CAS  PubMed  Google Scholar 

  17. Zhang J-F, Wei F, Wang H-P, Li H-M, Qiu W, Ren P-K et al (2010) Potent anti-tumor activity of telomerase-dependent and HSV-TK armed oncolytic adenovirus for non-small cell lung cancer in vitro and in vivo. J Exp Clin Cancer Res 29:52

    Article  PubMed  PubMed Central  Google Scholar 

  18. Irving J, Wang Z, Powell S, O’Sullivan C, Mok M, Murphy B et al (2004) Conditionally replicative adenovirus driven by the human telomerase promoter provides broad-spectrum antitumor activity without liver toxicity. Cancer Gene Ther 11(3):174–185

    Article  CAS  PubMed  Google Scholar 

  19. Sadeghi H, Hitt MM (2005) Transcriptionally targeted adenovirus vectors. Curr Gene Ther 5(4):411–427

    Article  CAS  PubMed  Google Scholar 

  20. Matsumoto K, Shariat SF, Ayala GE, Rauen KA, Lerner SP (2005) Loss of coxsackie and adenovirus receptor expression is associated with features of aggressive bladder cancer. Urology 66(2):441–446

    Article  PubMed  Google Scholar 

  21. Miller CR, Buchsbaum DJ, Reynolds PN, Douglas JT, Gillespie GY, Mayo MS et al (1998) Differential susceptibility of primary and established human glioma cells to adenovirus infection: targeting via the epidermal growth factor receptor achieves fiber receptor-independent gene transfer. Cancer Res 58(24):5738–5748

    CAS  PubMed  Google Scholar 

  22. Dmitriev I, Krasnykh V, Miller CR, Wang M, Kashentseva E, Mikheeva G et al (1998) An adenovirus vector with genetically modified fibers demonstrates expanded tropism via utilization of a coxsackievirus and adenovirus receptor-independent cell entry mechanism. J Virol 72(12):9706–9713

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Douglas JT, Kim M, Sumerel LA, Carey DE, Curiel DT (2001) Efficient oncolysis by a replicating adenovirus (ad) in vivo is critically dependent on tumor expression of primary ad receptors. Cancer Res 61(3):813–817

    CAS  PubMed  Google Scholar 

  24. van Beusechem VW, Grill J, Mastenbroek DCJ, Wickham TJ, Roelvink PW, Haisma HJ et al (2002) Efficient and selective gene transfer into primary human brain tumors by using single-chain antibody-targeted adenoviral vectors with native tropism abolished. J Virol 76(6):2753–2762

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kashentseva EA, Seki T, Curiel DT, Dmitriev IP (2002) Adenovirus targeting to c-erbB-2 oncoprotein by single-chain antibody fused to trimeric form of adenovirus receptor ectodomain. Cancer Res 62(2):609–616

    CAS  PubMed  Google Scholar 

  26. Dmitriev I, Kashentseva E, Rogers BE, Krasnykh V, Curiel DT (2000) Ectodomain of coxsackievirus and adenovirus receptor genetically fused to epidermal growth factor mediates adenovirus targeting to epidermal growth factor receptor-positive cells. J Virol 74(15):6875–6884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lord R, Parsons M, Kirby I, Beavil A, Hunt J, Sutton B et al (2006) Analysis of the interaction between RGD-expressing adenovirus type 5 fiber knob domains and alphavbeta3 integrin reveals distinct binding profiles and intracellular trafficking. J Gen Virol 87(Pt 9):2497–2505

    Article  CAS  PubMed  Google Scholar 

  28. Kurachi S, Koizumi N, Sakurai F, Kawabata K, Sakurai H, Nakagawa S et al (2007) Characterization of capsid-modified adenovirus vectors containing heterologous peptides in the fiber knob, protein IX, or hexon. Gene Ther 14(3):266–274

    Article  CAS  PubMed  Google Scholar 

  29. Krasnykh V, Dmitriev I, Mikheeva G, Miller CR, Belousova N, Curiel DT (1998) Characterization of an adenovirus vector containing a heterologous peptide epitope in the HI loop of the fiber knob. J Virol 72(3):1844–1852

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Piao Y, Jiang H, Alemany R, Krasnykh V, Marini FC, Xu J et al (2009) Oncolytic adenovirus retargeted to Delta-EGFR induces selective antiglioma activity. Cancer Gene Ther 16(3):256–265

    CAS  PubMed  Google Scholar 

  31. Koizumi N, Mizuguchi H, Utoguchi N, Watanabe Y, Hayakawa T (2003) Generation of fiber-modified adenovirus vectors containing heterologous peptides in both the HI loop and C terminus of the fiber knob. J Gene Med 5(4):267–276

    Article  CAS  PubMed  Google Scholar 

  32. Magnusson MK, Henning P, Myhre S, Wikman M, Uil TG, Friedman M et al (2007) Adenovirus 5 vector genetically re-targeted by an affibody molecule with specificity for tumor antigen HER2/neu. Cancer Gene Ther 14(5):468–479

    Article  CAS  PubMed  Google Scholar 

  33. Dmitriev IP, Kashentseva EA, Curiel DT (2002) Engineering of adenovirus vectors containing heterologous peptide sequences in the C terminus of capsid protein IX. J Virol 76(14):6893–6899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Poulin KL, Lanthier RM, Smith AC, Christou C, Risco Quiroz M, Powell KL et al (2010) Retargeting of adenovirus vectors through genetic fusion of a single-chain or single-domain antibody to capsid protein IX. J Virol 84(19):10074–10086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vigne E, Mahfouz I, Dedieu JF, Brie A, Perricaudet M, Yeh P (1999) RGD inclusion in the hexon monomer provides adenovirus type 5-based vectors with a fiber knob-independent pathway for infection. J Virol 73(6):5156–5161

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Campos SK, Barry MA (2004) Rapid construction of capsid-modified adenoviral vectors through bacteriophage lambda red recombination. Hum Gene Ther 15(11):1125–1130

    Article  CAS  PubMed  Google Scholar 

  37. Coughlan L, Alba R, Parker AL, Bradshaw AC, McNeish IA, Nicklin SA et al (2010) Tropism-modification strategies for targeted gene delivery using adenoviral vectors. Viruses 2(10):2290–2355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Soboleski MR, Oaks J, Halford WP (2005) Green fluorescent protein is a quantitative reporter of gene expression in individual eukaryotic cells. FASEB J 19(3):440–442

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Smale ST (2010) Luciferase assay. Cold Spring Harb Protoc. doi:10.1101/pdb.prot5421

  40. Sato A, Klaunberg B, Tolwani R (2004) In vivo bioluminescence imaging BLI : an overview. Comp Med 54(6):631–634

    CAS  PubMed  Google Scholar 

  41. Potts KG, Favis NA, Pink DB, Vincent KM, Lewis JD, Moore RB, Hitt MM, Evans D (2017) Oncolytic vaccinia virus F4L (ribonucleotide reductase) mutants promote anti-tumor immunity with superior safety in bladder cancer models. EMBO Mol Med 9(5):638–654

    Google Scholar 

  42. Hoganson DK, Sosnowski BA, Pierce GF, Doukas J (2001) Uptake of adenoviral vectors via fibroblast growth factor receptors involves intracellular pathways that differ from the targeting ligand. Mol Ther 3(1):105–112

    Article  CAS  PubMed  Google Scholar 

  43. Meulenbroek RA, Sargent KL, Lunde J, Jasmin BJ, Parks RJ (2004) Use of adenovirus protein IX (pIX) to display large polypeptides on the virion–generation of fluorescent virus through the incorporation of pIX-GFP. Mol Ther 9(4):617–624

    Article  CAS  PubMed  Google Scholar 

  44. Rogée S, Grellier E, Bernard C, Loyens A, Beauvillain J-C, D’halluin J-C et al (2007) Intracellular trafficking of a fiber-modified adenovirus using lipid raft/caveolae endocytosis. Mol Ther 15(11):1963–1972

    Article  PubMed  Google Scholar 

  45. Leopold PL, Ferris B, Grinberg I, Worgall S, Hackett NR, Crystal RG (1998) Fluorescent virions: dynamic tracking of the pathway of adenoviral gene transfer vectors in living cells. Hum Gene Ther 9(3):367–378

    Article  CAS  PubMed  Google Scholar 

  46. MacLeod SH (2013) Binding, internalization, and transgene expression of an adenoviral vector retargeted to HER3/4. Dissertation, University of Alberta

    Google Scholar 

  47. Evans RK, Nawrocki DK, Isopi LA, Williams DM, Casimiro DR, Chin S et al (2004) Development of stable liquid formulations for adenovirus-based vaccines. J Pharm Sci 93(10):2458–2475

    Article  CAS  PubMed  Google Scholar 

  48. Public Health Agency of Canada (2015) Canadian biosafety standard. Public Health Agency of Canada, Ottawa, p 151

    Google Scholar 

  49. Parks RJ, Chen L, Anton M, Sankar U, Rudnicki MA, Graham FL (1996) A helper-dependent adenovirus vector system: removal of helper virus by Cre-mediated excision of the viral packaging signal. Proc Natl Acad Sci U S A 93(24):13565–13570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. National Research Council (US) Committee on Methods of Producing Monoclonal Antibodies (1999) In vitro production of monoclonal antibody. In: Monoclonal antibody production. National Academies Press (US), Washington (DC)

    Google Scholar 

  51. Condit RC (2001) Principles of virology. In: Knipe DK, Howley PM (eds) Fields virology, 4th edn. Lippincott-Raven, Philadelphia, USA, p 3280

    Google Scholar 

  52. Bilbao G, Contreras JL, Gomez-Navarro J, Curiel DT (1998) Improving adenoviral vectors for cancer gene therapy. Tumor Target 1(3):59–79

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheena H. MacLeod .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

MacLeod, S.H., Potts, K.G., Chaurasiya, S., Hitt, M.M. (2017). Assessment of Specificity of an Adenovirus Targeted to HER3/4. In: Wang, Z. (eds) ErbB Receptor Signaling. Methods in Molecular Biology, vol 1652. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7219-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7219-7_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7218-0

  • Online ISBN: 978-1-4939-7219-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics