Skip to main content

Fluorescent Quail: A Transgenic Model System for the Dynamic Study of Avian Development

  • Protocol
  • First Online:
Avian and Reptilian Developmental Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1650))

Abstract

Real-time four-dimensional (4D, xyzt) imaging of cultured avian embryos is an ideal method for investigating the complex movements of cells and tissues during early morphogenesis. While methods that transiently label cells, such as electroporation, are highly useful for dynamic imaging, they can also be limiting due to the number and type of cells that can be effectively targeted. In contrast, the heritable, stable, and long-term expression of a fluorescent protein driven by the exogenous promoter of a transgene overcomes these challenges. We have used lentiviral vectors to produce several novel transgenic quail lines that express fluorescent proteins either ubiquitously or in a cell-specific manner. These lines have proven to be useful models for dynamic imaging and analysis. Here, we provide detailed protocols for generating transgenic quail with the emphasis on producing high titer lentivirus , effectively introducing it into the early embryo and efficiently screening for G1 founder birds .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lois C, Hong EJ, Pease S, Brown EJ, Baltimore D (2002) Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 295:868–872

    Article  CAS  PubMed  Google Scholar 

  2. McGrew MJ, Sherman A, Ellard FM, Lillico SG, Gilhooley HJ, Kingsman AJ, Mitrophanous KA, Sang H (2004) Efficient production of germline transgenic chickens using lentiviral vectors. EMBO Rep 5:728–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chapman SC, Lawson A, Macarthur WC, Wiese RJ, Loechel RH, Burgos-Trinidad M, Wakefield JK, Ramabhadran R, Mauch TJ, Schoenwolf GC (2005) Ubiquitous GFP expression in transgenic chickens using a lentiviral vector. Development 132:935–940

    Article  CAS  PubMed  Google Scholar 

  4. McGrew MJ, Sherman A, Lillico SG, Ellard FM, Radcliffe P, Gilhooley HJ, Mitrophanous KA, Cambray N, Wilson V, Sang H (2008) Localised axial progenitor cell populations in the avian tail bud are not commited to a posterior Hox identity. Development 135:2289–2299

    Article  CAS  PubMed  Google Scholar 

  5. Motono M, Yamada Y, Hattori Y, Nakagawa R, Nishijima KI, Iijima S (2010) Production of transgenic chickens from purified primordial germ cells infected with a lentiviral vector. J Biosci Bioeng 109:315–321

    Article  CAS  PubMed  Google Scholar 

  6. Sato Y, Poynter G, Huss D, Filla MB, Czirok A, Choi JM, Rongish BJ, Little CD, Fraser SE, Lansford R (2010) Dynamic analysis of vascular morphogenesis using transgenic quail embryos. PLoS One 5:e12674

    Article  PubMed  PubMed Central  Google Scholar 

  7. Scott BB, Lois C (2005) Generation of tissue-specific transgenic birds with lentiviral vectors. Proc Natl Acad Sci 102:16443–16447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Seidl AH, Sanchez JT, Schecterson L, Tabor KM, Wang Y, Kashima DT, Poynter G, Huss D, Fraser SE, Lansford R (2013) Transgenic quail as a model for research in the avian nervous system: a comparative study of the auditory brainstem. J Comp Neurol 521:5–23

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ahn J, Shin S, Huh Y, Park JY, Hwang W, Lee K (2015) Identification of the avian RBP7 gene as a new adipose specific gene and PBP7 promoter driven GFP expression in adipose tissue of transgenic quail. PLoS One 10:e0124768

    Article  PubMed  PubMed Central  Google Scholar 

  10. Rozbicki E, Chuai M, Karjalainen AI, Song F, Sang HM, Martin R, Knolker HJ, MacDonald MP, Weijer CJ (2015) Myosin-II-mediated cell shape changes and cell intercalation contribute to primitive streak formation. Nat Cell Biol 17:397–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Huss D, Benazeraf B, Wallingford A, Filla M, Yang J, Fraser SE, Lansford R (2015) A transgenic quail model that enables dynamic imaging of amniote embryogenesis. Development 142:2850–2859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Benazeraf B, Beaupeux M, Tchernookov M, Wallingford A, Shirtz A, Shirtz A, Huss D, Pourquie O, Francois P, Lansford R. (2016) Multiscale quantification of tissue behavior during amniote embryo axis elongation. bioRxiv. doi: 10.1101/053124

  13. Eyal-Giladi H, Kochav S (1975) From cleavage to primitive streak formation; a complementary normal table and a new look at the first stages of the development of the chick. I. General morphology. Dev Biol 49:321–337

    Article  Google Scholar 

  14. Scott BB, Lois C (2006) Generation of transgenic birds with replication-deficient lentiviruses. Nat Protoc 1:1406–1411

    Article  CAS  PubMed  Google Scholar 

  15. Poynter G, Lansford R (2008) Generating transgenic quail using lentiviruses. In: Bronner-Fraser M (ed) Avian embryology, Methods in cell biology, vol 87, 2nd edn. Academic Press, San Diego, CA, pp 281–293

    Chapter  Google Scholar 

  16. Poynter G, Huss D, Lansford R (2009) Japanese quail: an efficient animal model for the production of transgenic avians. Cold Spring Harb Protoc. doi:10.1101/pdb.emo112

  17. Yacoub N, Romanowska M, Haritonova N, Foerster J (2007) Optimized production and concentration of lentiviral vectors containing large inserts. J Gene Med 9:579–584

    Article  PubMed  Google Scholar 

  18. Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D, Naldini L (1998) A third generation lentivirus vector with a conditional packaging system. J Virol 72:8463–8471

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Miyoshi H, Blomer U, Takahashi M, Gage FH, Verma IM (1998) Development of a self inactivating lentivirus vector. J Virol 72:8150–8157

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ramezani A, Hawley RG (2002) Generation of HIV-1-based lentiviral vector particles. Curr Protoc Mol Biol:Unit 16.22.1–16.22.15

    Google Scholar 

  21. Reiser J (2000) Production and concentration of pseudotyped HIV-1-based gene transfer vectors. Gene Ther 7:910–913

    Article  CAS  PubMed  Google Scholar 

  22. Coleman JE, Huentelman MJ, Kasparov S, Metcalfe BL, Paton JFR, Katovich MJ, Semple-Rowland SL, Raizada MK (2003) Efficient large-scale production and concentration of HIV-1-based lentiviral vectors for use in vivo. Physiol Genomics 12:221–228

    Article  CAS  PubMed  Google Scholar 

  23. Kutner RH, Zhang XY, Reiser J (2009) Production, concentration and titration of pseudotyped HIV-1-based lentiviral vectors. Nat Protoc 4:495–505

    Article  CAS  PubMed  Google Scholar 

  24. Geraerts M, Michiels M, Baekelandt V, Debyser Z, Gijsbers R (2005) Upscaling of lentiviral vector production by tangential flow filtration. J Gene Med 7:1299–1310

    Article  CAS  PubMed  Google Scholar 

  25. Cooper AR, Patel S, Senadheera S, Plath K, Kohn DB (2011) Highly efficient large-scale vector concentration by tandem tangential flow filtration. J Virol Methods 177:1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Logan AC, Nightingale SJ, Haas DL, Cho GJ, Pepper KA, Kohn DB (2004) Factors influencing the titer and infectiviy of lentiviral vectors. Hum Gene Ther 15:976–988

    Article  CAS  PubMed  Google Scholar 

  27. Zhang B, Metharom P, Jullie H, Ellem KAO, Cleghorn G, West MJ, Wei MQ (2004) The significance of controlled conditions in lentiviral vector titration and in the use of multiplicity of infection (MOI) for predicting gene transer events. Genet Vaccines Ther 2:6–15

    Article  PubMed  PubMed Central  Google Scholar 

  28. Geraerts M, Willems S, Baekelandt V, Debyser Z, Gijsbers R (2006) Comparison of lentiviral vector titration methods. BMC Biotechnol 6:34–43

    Article  PubMed  PubMed Central  Google Scholar 

  29. Speksnijder G, Ivarie R (2000) A modified method of shell windowing for producing somatiic or germline chimeras in fertilized chicken eggs. Poult Sci 79:1430–1433

    Article  CAS  PubMed  Google Scholar 

  30. Agate RJ, Scott BB, Haripal B, Lois C, Nottebohm F (2009) Transgenic songbirds offer an opportunity to develop a genetic model for vocal learning. Proc Natl Acad Sci U S A 106:17963–17967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Baekelandt V, Eggermont K, Michiels M, Nuttin B, Debyser Z (2003) Optimized lentiviral vector production and purification procedure prevents immune response after transduction of mouse brain. Gene Ther 10:1933–1940

    Article  CAS  PubMed  Google Scholar 

  32. Huss D, Poynter G, Lansford R (2008) Japanese quail (Coturnix japonica) as a laboratory animal model. Lab Anim 37:513–519

    Article  Google Scholar 

  33. Woodard AE, Abplanalp H, Wilson WO, Vohra P (1973) Japanese quail husbandry in the laboratory. Department of Avian Sciences, University of California-Davis, Davis, CA

    Google Scholar 

  34. Cheng KM, Bennett DC, Mills AD (2010) The Japanese quail. Chapter 42. In: Hubrecht R, Kirkwood J (eds) The UFAW handbook on the care and management of laboratory and other research animals, 8th edn. Universities Federation for Animal Welfare, Wiley-Blackwell, London

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Bertrand Benazeraf, Dr. Gerome Gros, and Greg Poynter for help in developing and optimizing this method.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rusty Lansford .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Huss, D., Lansford, R. (2017). Fluorescent Quail: A Transgenic Model System for the Dynamic Study of Avian Development. In: Sheng, G. (eds) Avian and Reptilian Developmental Biology. Methods in Molecular Biology, vol 1650. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7216-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7216-6_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7215-9

  • Online ISBN: 978-1-4939-7216-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics