Skip to main content

Application of a CAGE Method to an Avian Development Study

  • Protocol
  • First Online:
Avian and Reptilian Developmental Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1650))

Abstract

Cap analysis of gene expression (CAGE) is a convenient approach for genome-wide identification of promoter regions at single base-pair resolution level and accurate expression estimation of the corresponding transcripts. Depending on the initial biomaterial amount and sequencing technology, different computational pipelines for data processing are available, as well as variations of the CAGE protocol that improve sensitivity and accuracy. Therefore, this chapter elucidates the key steps of sample preparation, sequencing, and data analysis via an example of a promoter expression estimation study in chicken development. We also describe the applicability of this approach for studying other avian and reptilian species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Genome 10K Community of Scientists (2009) Genome 10K: a proposal to obtain whole-genome sequence for 10,000 vertebrate species. J Hered 100:659–674. doi:10.1093/jhered/esp086

    Article  PubMed Central  Google Scholar 

  2. Koepfli KP, Paten B et al (2015) The Genome 10K Project: a way forward. Annu Rev Anim Biosci 3:57–111. doi:10.1146/annurev-animal-090414-014900

    Article  CAS  PubMed  Google Scholar 

  3. Wu JQ, Rozowsky J, Zhang Z et al (2008) Systematic analysis of transcribed loci in ENCODE regions using RACE sequencing reveals extensive transcription in the human genome. Genome Biol. doi:10.1186/gb-2008-9-1-r3

  4. Ozsolak F, Milos PM (2011) RNA sequencing: advances, challenges and opportunities. Nat Rev Genet 12:87–98. doi:10.1038/nrg2934

    Article  CAS  PubMed  Google Scholar 

  5. Forrest ARR, Kawaji H, Rehli M et al (2014) A promoter-level mammalian expression atlas. Nature 507:462–470. doi:10.1038/nature13182

    Article  CAS  PubMed  Google Scholar 

  6. Morrissy S, Zhao Y, Delaney A et al (2010) Digital gene expression by tag sequencing on the illumina genome analyzer. Curr Protoc Hum Genet 11(11):1–36. doi:10.1002/0471142905.hg1111s65

    Google Scholar 

  7. ENCODE Project Consortium (2004) The ENCODE (ENCyclopedia Of DNA Elements) Project. Science 306:636–640. doi:10.1126/science.1105136

    Article  Google Scholar 

  8. Arner E, Daub CO, Vitting-Seerup K et al (2015) Transcribed enhancers lead waves of coordinated transcription in transitioning mammalian cells. Science 347:1010–1014. doi:10.1126/science.1259418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hoskins RA, Landolin JM, Brown JB et al (2011) Genome-wide analysis of promoter architecture in Drosophila melanogaster. Genome Res 21:182–192. doi:10.1101/gr.112466.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nepal C, Hadzhiev Y, Previti C et al (2013) Dynamic regulation of the transcription initiation landscape at single nucleotide resolution during vertebrate embryogenesis. Genome Res 23:1938–1950. doi:10.1101/gr.153692.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Haberle V, Li N, Hadzhiev Y et al (2014) Two independent transcription initiation codes overlap on vertebrate core promoters. Nature 507:381–385. doi:10.1038/nature12974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Takahashi H, Lassmann T, Murata M, Carninci P (2012) 5′ end-centered expression profiling using cap-analysis gene expression and next-generation sequencing. Nat Protoc 7:542–561. doi:10.1038/nprot.2012.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Itoh M, Kojima M, Nagao-Sato S et al (2012) Automated workflow for preparation of cDNA for cap analysis of gene expression on a single molecule sequencer. PLoS One. doi:10.1371/journal.pone.0030809

  14. Salimullah M, Sakai M, Plessy C, Carninci P (2011) NanoCAGE: a high-resolution technique to discover and interrogate cell transcriptomes. Cold Spring Harb Protoc:pdb.prot5559. doi:10.1101/pdb.prot5559

  15. Carninci P, Kvam C, Kitamura A et al (1996) High-efficiency full-length cDNA cloning by biotinylated CAP trapper. Genomics 37:327–336

    Article  CAS  PubMed  Google Scholar 

  16. Kanamori-Katayama M, Itoh M, Kawaji H et al (2011) Unamplified cap analysis of gene expression on a single-molecule sequencer. Genome Res 21:1150–1159. doi:10.1101/gr.115469.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lizio M, Harshbarger J, Shimoji H et al (2015) Gateways to the FANTOM5 promoter level mammalian expression atlas. Genome Biol 16:22. doi:10.1186/s13059-014-0560-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rio DC, Ares M Jr, Hannon GJ, Nilsen TW (2010) Purification of RNA using TRIzol (TRI reagent). Cold spring Harb Protoc:pdb.prot5439. doi:10.1101/pdb.prot5439

  19. Hasegawa A, Daub C, Carninci P, Hayashizaki Y, Lassmann T (2014) MOIRAI: a compact workflow system for CAGE analysis. BMC Bioinformatics 15:144. doi:10.1186/1471-2105-15-144

    Article  PubMed  PubMed Central  Google Scholar 

  20. Li H, Durbin R (2010) Fast and accurate long-read alignment with burrows-wheeler transform. Bioinformatics 26:589–595. doi:10.1093/bioinformatics/btp698

    Article  PubMed  PubMed Central  Google Scholar 

  21. Frith MC, Valen E, Krogh A et al (2008) A code for transcription initiation in mammalian genomes. Genome Res 18:1–12. doi:10.1101/gr.6831208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Severin J, Lizio M, Harshbarger J et al (2014) Interactive visualization and analysis of large-scale sequencing datasets using ZENBU. Nat Biotechnol 32:217–219. doi:10.1038/nbt.2840

    Article  CAS  PubMed  Google Scholar 

  23. Haberle V, Forrest ARR, Hayashizaki Y, Carninci P, Lenhard B (2015) CAGEr: precise TSS data retrieval and high-resolution promoterome mining for integrative analyses. Nucleic Acids Res. doi:10.1093/nar/gkv054

  24. Ohmiya H, Vitezic M, Frith MC et al (2014) RECLU: a pipeline to discover reproducible transcriptional start sites and their alternative regulation using capped analysis of gene expression (CAGE). BMC Genomics 15:269. doi:10.1186/1471-2164-15-269

    Article  PubMed  PubMed Central  Google Scholar 

  25. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842. doi:10.1093/bioinformatics/btq033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140. doi:10.1093/bioinformatics/btp616

    Article  CAS  PubMed  Google Scholar 

  27. Zhang G, Li C, Li Q et al (2014) Comparative genomics reveals insights into avian genome evolution and adaptation. Science 346:1311–1320. doi:10.1126/science.1251385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Thorvaldsdóttir H, Robinson JT, Mesirov JP (2013) Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14:178–192. doi:10.1093/bib/bbs017

    Article  PubMed  Google Scholar 

  29. Zhang G, Li B, Li C et al (2014) Comparative genomic data of the avian Phylogenomics project. Gigascience 3:26. doi:10.1186/2047-217X-3-26

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tzika AC, Ullate-Agote A, Grbic D, Milinkovitch MC (2015) Reptilian Transcriptomes v2.0: an extensive resource for Sauropsida genomics and Transcriptomics. Genome Biol Evol 7:1827–1841. doi:10.1093/gbe/evv106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Andersson R, Gebhard C, Miguel-Escalada I et al (2014) An atlas of active enhancers across human cell types and tissues. Nature 507:455–461. doi:10.1038/nature12787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Russian Science Foundation, grant â„–14-44-00022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Gusev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Deviatiiarov, R., Lizio, M., Gusev, O. (2017). Application of a CAGE Method to an Avian Development Study. In: Sheng, G. (eds) Avian and Reptilian Developmental Biology. Methods in Molecular Biology, vol 1650. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7216-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7216-6_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7215-9

  • Online ISBN: 978-1-4939-7216-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics