Skip to main content

An Early Chick Embryo Culture Device for Extended Continuous Observation

  • Protocol
  • First Online:
Book cover Avian and Reptilian Developmental Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1650))

Abstract

Appropriate mechanical tension of the vitelline membrane as the culture substrate for the early chick embryo is frequently reported to be required for successful in vitro development. Here we describe a modified device, made of anodized aluminum, for in vitro culture which we used for studies of left-right symmetry breaking with emphasis on morphology and gene expression as readouts. The technique allows for easy, high-throughput tissue handling and provides a suitable tension in a stable and easily reproducible manner proven to be suitable for correct molecular left-right patterning and heart looping after long-term culture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Voiculescu O, Bertocchini F, Wolpert L, Keller RE, Stern CD (2007) The amniote primitive streak is defined by epithelial cell intercalation before gastrulation. Nature 449:1049–1052

    Article  CAS  PubMed  Google Scholar 

  2. Nakaya Y, Sukowati EW, Wu Y, Sheng G (2008) RhoA and microtubule dynamics control cell-basement membrane interaction in EMT during gastrulation. Nat Cell Biol 10:765–775

    Article  CAS  PubMed  Google Scholar 

  3. Dias AS, de Almeida I, Belmonte JM, Glazier JA, Stern CD (2014) Somites without a clock. Science 343:791–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dubrulle J, McGrew MJ, Pourquie O (2001) FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation. Cell 106:219–232

    Article  CAS  PubMed  Google Scholar 

  5. Colas JF, Schoenwolf GC (2001) Towards a cellular and molecular understanding of neurulation. Dev Dyn 221:117–145

    Article  CAS  PubMed  Google Scholar 

  6. Manner J (2000) Cardiac looping in the chick embryo: a morphological review with special reference to terminological and biomechanical aspects of the looping process. Anat Rec 259:248–262

    Article  CAS  PubMed  Google Scholar 

  7. Varner VD, Voronov DA, Taber LA (2010) Mechanics of head fold formation: investigating tissue-level forces during early development. Development 137:3801–3811

    Article  PubMed  PubMed Central  Google Scholar 

  8. Stern CD, Bachvarova R (1997) Early chick embryos in vitro. Int J Dev Biol 41:379–387

    CAS  PubMed  Google Scholar 

  9. Beloussov LV (2015) Morphomechanics of development. Springer, Heidelberg

    Book  Google Scholar 

  10. Beloussov LV (2008) Mechanically based generative laws of morphogenesis. Phys Biol 5:015009

    Article  PubMed  Google Scholar 

  11. New DAT (1955) A new technique for the cultivation of the chick embryo in vitro. J Embryol Exp Morph 3:326–331

    Google Scholar 

  12. Voiculescu O, Papanayotou C, Stern CD (2008) Spatially and temporally controlled electroporation of early chick embryos. Nat Protoc 3:419–426

    Article  CAS  PubMed  Google Scholar 

  13. Chapman SC, Collignon J, Schoenwolf GC, Lumsden A (2001) Improved method for chick whole-embryo culture using a filter paper carrier. Dev Dyn 220:284–289

    Article  CAS  PubMed  Google Scholar 

  14. Torlopp A, Khan MA, Oliveira NM, Lekk I, Soto-Jimenez LM, Sosinsky A, Stern CD (2014) The transcription factor Pitx2 positions the embryonic axis and regulates twinning. Elife 3:e03743

    Article  PubMed  PubMed Central  Google Scholar 

  15. Menkes B, Micela C, Elias S, Deleanu M (1961) Researches on the formation of axial organs: I. Studies on the differentiation of the semites. Acad Repub Pop Rom Baza Cercet Timisoara Stud Cercet Stiint Med 8:7–34

    Google Scholar 

  16. Ghatpande SK (2008) Gallera method of chick embryo culture in vitro supports better growth compared with original new method. Develop Growth Differ 50:437–442

    Article  Google Scholar 

  17. Nicolet G, Gallera J (1963) Under what conditions will the amnion of the chick embryo develop in culture in vitro? Experientia 19:165–166

    Article  CAS  PubMed  Google Scholar 

  18. Nagai H, Sezaki M, Nakamura H, Sheng G (2014) Extending the limits of avian embryo culture with the modified Cornish pasty and whole-embryo transplantation methods. Methods 66:441–446

    Article  CAS  PubMed  Google Scholar 

  19. Fischer M, Schoenwolf GC (1983) The use of early chick embryos in experimental embryology and teratology: improvements in standard procedures. Teratology 27:65–72

    Article  Google Scholar 

  20. Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morphol 88:49–92

    Article  CAS  PubMed  Google Scholar 

  21. Tsikolia N, Schroder S, Schwartz P, Viebahn C (2012) Paraxial left-sided nodal expression and the start of left-right patterning in the early chick embryo. Differentiation 84:380–391

    Article  CAS  PubMed  Google Scholar 

  22. Ryan AK, Blumberg B, Rodriguez-Esteban C, Yonei-Tamura S, Tamura K, Tsukui T, de la Pena J, Sabbagh W, Greenwald J, Choe S et al (1998) Pitx2 determines left-right asymmetry of internal organs in vertebrates. Nature 394:545–551

    Article  CAS  PubMed  Google Scholar 

  23. St Amand TR, Ra J, Zhang Y, Hu Y, Baber SI, Qiu M, Chen Y (1998) Cloning and expression pattern of chicken Pitx2: a new component in the SHH signaling pathway controlling embryonic heart looping. Biochem Biophys Res Commun 247:100–105

    Article  CAS  PubMed  Google Scholar 

  24. Patel K, Isaac A, Cooke J (1999) Nodal signalling and the roles of the transcription factors SnR and Pitx2 in vertebrate left-right asymmetry. Curr Biol 9:609–612

    Article  CAS  PubMed  Google Scholar 

  25. Logan M, Pagan-Westphal SM, Smith DM, Paganessi L, Tabin CJ (1998) The transcription factor Pitx2 mediates situs-specific morphogenesis in response to left-right asymmetric signals. Cell 94:307–317

    Article  CAS  PubMed  Google Scholar 

  26. Piedra ME, Icardo JM, Albajar M, Rodriguez-Rey JC, Ros MA (1998) Pitx2 participates in the late phase of the pathway controlling left-right asymmetry. Cell 94:319–324

    Article  CAS  PubMed  Google Scholar 

  27. Dathe V, Gamel A, Manner J, Brand-Saberi B, Christ B (2002) Morphological left-right asymmetry of Hensen’s node precedes the asymmetric expression of Shh and Fgf8 in the chick embryo. Anat Embryol (Berl) 205:343–354

    Article  CAS  Google Scholar 

  28. Cooke J (1995) Vertebrate embryo handedness. Nature 374:681

    Article  CAS  PubMed  Google Scholar 

  29. Otto A, Pieper T, Viebahn C, Tsikolia N (2014) Early left-right asymmetries during axial morphogenesis in the chick embryo. Genesis 52:614–625

    Article  PubMed  Google Scholar 

  30. Seidl W (1977) Description of a device facilitating the in vitro culture of the chick embryo according to the new method. Folia Morphol (Praha) 25:43–45

    CAS  Google Scholar 

  31. Seidl W, Steding G (1978) Frühentwicklung der Herzanlage. Gallus domesticus – 1. Und 2. Bebrütungstag. Film E2507, Encyclopaedia Cinematographica. Institut für den wissenschaftlichen Film, Göttingen

    Google Scholar 

  32. Levin M, Johnson RL, Stern CD, Kuehn M, Tabin C (1995) A molecular pathway determining left-right asymmetry in chick embryogenesis. Cell 82:803–814

    Article  CAS  PubMed  Google Scholar 

  33. Psychoyos D, Stern CD (1996) Restoration of the organizer after radical ablation of Hensen’s node and the anterior primitive streak in the chick embryo. Development 122:3263–3273

    CAS  PubMed  Google Scholar 

  34. Steding G, Seidl W, Sydow H, Bahners W, Borowski D (1981) Experimental manipulations leading to cardiac malformations in chick embryo. In: Neubert D, Merker H-J (eds) Culture techniques. Applicability for studies on prenatal differentiation and toxicity. De Grueter, Berlin, New York, pp 539–551

    Google Scholar 

  35. Kremer JE (1988) Wachstumsverhalten des Entoderm beim Descensus der Darmpforte. Inaugural dissertation, Georg-August Universität, Göttingen

    Google Scholar 

  36. Meyer E (1989) Die embryonale Kopfdrehung in Abhängigkeit von der Lage des Herzens. Inaugural dissertation, Georg-August Universität, Göttingen

    Google Scholar 

Download references

Acknowledgment

We thank Jörg Männer and Wolfgang Seidl for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikoloz Tsikolia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Sydow, HG., Pieper, T., Viebahn, C., Tsikolia, N. (2017). An Early Chick Embryo Culture Device for Extended Continuous Observation. In: Sheng, G. (eds) Avian and Reptilian Developmental Biology. Methods in Molecular Biology, vol 1650. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7216-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7216-6_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7215-9

  • Online ISBN: 978-1-4939-7216-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics