Skip to main content

Model Clades Versus Model Species: Anolis Lizards as an Integrative Model of Anatomical Evolution

  • Protocol
  • First Online:
Avian and Reptilian Developmental Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1650))

Abstract

Anolis lizards , known for their replicated patterns of morphological diversification, are widely studied in the fields of evolution and ecology. As a textbook example of adaptive radiation, this genus has supported decades of intense study in natural history, behavior, morphological evolution, and systematics. Following the publication of the A. carolinensis genome, research on Anolis lizards has expanded into new areas, toward obtaining an understanding the developmental and genetic bases of anole diversity. Here, we discuss recent progress in these areas and the burgeoning methodological toolkit that has been used to elucidate the genetic mechanisms underlying anatomical variation in this group. We also highlight the growing number of studies that have used A. carolinensis as the representative squamate in large-scale comparison of amniote evolution and development . Finally, we address one of the largest technical challenges biologists are facing in making Anolis a model for integrative studies of ecology, evolution, development , and genetics, the development of ex-ovo culturing techniques that have broad utility. Ultimately, with the power to ask questions across all biological scales in this diverse genus full, anoles are rapidly becoming a uniquely integrative and powerful biological system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Losos J (2009) Lizards in an evolutionary tree. University of California Press, Berkeley, CA

    Google Scholar 

  2. Losos J, Jackman T, Larson A et al (1998) Contingency and determinism in replicated adaptive radiations of island lizards. Science 279:2115–2118

    Article  CAS  PubMed  Google Scholar 

  3. Mahler D, Revell L, Glor R, Losos J (2010) Ecological opportunity and the rate of morphological evolution in the diversification of Greater Antillean Anoles. Evolution 64:2731–2745

    Article  PubMed  Google Scholar 

  4. Alföldi J, Di Palma F, Grabherr M et al (2011) The genome of the green anole lizard and a comparative analysis with birds and mammals. Nature 477:587–591

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gans C, Billet F, Maderson P (1985) Biology of the reptilia, vol 14. John Wiley & Sons, New York

    Google Scholar 

  6. Gans C, Billet F (1985) Biology of the Reptilia, vol 15. John Wiley & Sons, New York

    Google Scholar 

  7. Sanger T, Losos J, Gibson-Brown J (2008) A developmental staging series for the lizard genus Anolis: a new system for the integration of evolution, development, and ecology. J Morphol 269:129–137

    Article  PubMed  Google Scholar 

  8. Tschopp P, Sherratt E, Sanger TJ et al (2014) A relative shift in cloacal location repositions external genitalia in amniote evolution. Nature 516:391–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sanger T, Seav S, Tokita M et al (2014) The oestrogen pathway underlies the evolution of exaggerated male cranial shapes in Anolis lizards. Proc Biol Sci 281:20140329

    Article  PubMed  PubMed Central  Google Scholar 

  10. Infante C, Mihala A, Park S et al (2015) Shared enhancer activity in the limbs and phallus and functional divergence of a limb-genital cis-regulatory element in snakes. Dev Cell 35:107–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gamble T, Geneva A, Glor R, Zarkower D (2014) Anolis sex chromosomes are derived from a single ancestral pair. Evolution 68:1027–1041

    Article  CAS  PubMed  Google Scholar 

  12. Eckalbar W, Lasku E, Infante C et al (2012) Somitogenesis in the anole lizard and alligator reveals evolutionary convergence and divergence in the amniote segmentation clock. Dev Biol 363:308–319

    Article  CAS  PubMed  Google Scholar 

  13. Kusumi K, May C, Eckalbar W (2013) A large-scale view of the evolution of amniote development: insights from somitogenesis in reptiles. Curr Opin Genet Dev 23:491–497

    Article  CAS  PubMed  Google Scholar 

  14. Koshiba-Takeuchi K, Mori A, Kaynak B et al (2009) Reptilian heart development and the molecular basis of cardiac chamber evolution. Nature 461:95–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ritzman T, Stroik L, Julik E et al (2012) The gross anatomy of the original and regenerated tail in the green anole (Anolis carolinensis). Anat Rec 295:1596–1608

    Article  Google Scholar 

  16. Gredler M, Sanger T, Cohn M (2015) Development of the cloaca, hemipenes, and hemiclitores in the green anole, Anolis carolinensis. Sex Dev 9:21–33

    Article  PubMed  Google Scholar 

  17. Park S, Infante C, Rivera-Davila L, Menke D (2014) Conserved regulation of hoxc11 by pitx1 in Anolis lizards. J Exp Zool B Mol Dev Evol 322:156–165

    Article  CAS  PubMed  Google Scholar 

  18. Diaz R, Trainor P (2015) Hand/foot splitting and the “re-evolution” of mesopodial skeletal elements during the evolution and radiation of chameleons. BMC Evol Biol 15:184

    Article  PubMed  PubMed Central  Google Scholar 

  19. Butler MA, Sawyer SA, Losos JB (2007) Sexual dimorphism and adaptive radiation in Anolis lizards. Nature 447:202–205

    Article  CAS  PubMed  Google Scholar 

  20. Butler M, Losos J (2002) Multivariate sexual dimorphism, sexual selection, and adaptation in Greater Antillean Anolis lizards. Ecol Monogr 72:541–559

    Article  Google Scholar 

  21. Butler M, Schoener T, Losos J (2000) The relationship between sexual size dimorphism and habitat use in Greater Antillean Anolis lizards. Evolution 54:259–272

    CAS  PubMed  Google Scholar 

  22. Sanger T, Sherratt E, McGlothlin J et al (2013) Convergent evolution of sexual dimorphism in skull shape using distinct developmental strategies. Evolution 67:2180–2193

    Article  PubMed  Google Scholar 

  23. Johnson M, Cohen R, Vandecar J, Wade J (2011) Relationships among reproductive morphology, behavior, and testosterone in a natural population of green anole lizards. Physiol Behav 104:437–445

    Article  CAS  PubMed  Google Scholar 

  24. Johnson M, Wade J (2010) Behavioural display systems across nine Anolis lizard species: sexual dimorphisms in structure and function. Proc Biol Sci 277:1711–1719

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cox R, Stenquist D, Calsbeek R (2009) Testosterone, growth and the evolution of sexual size dimorphism. J Evol Biol 22:1586–1598

    Article  CAS  PubMed  Google Scholar 

  26. Losos J, Arnold S, Bejerano G et al (2013) Evolutionary biology for the 21st century. PLoS Biol 11:e1001466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sanger T, Revell L, Gibson-Brown J, Losos J (2012) Repeated modification of early limb morphogenesis programmes underlies the convergence of relative limb length in Anolis lizards. Proc R Soc B Biol Sci 279:739–748

    Article  Google Scholar 

  28. Vavilov V (1922) The law of homologous series in variation. J Genet 12:47–89

    Article  Google Scholar 

  29. Jensen B, van den Berg G, van den Doel R et al (2013) Development of the hearts of lizards and snakes and perspectives to cardiac evolution. PLoS One 8:e63651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hutchins E, Markov G, Eckalbar W et al (2014) Transcriptomic analysis of tail regeneration in the lizard Anolis carolinensis reveals activation of conserved vertebrate developmental and repair mechanisms. PLoS One 9:e105004

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hutchins E, Eckalbar W, Wolter J et al (2016) Differential expression of conserved and novel microRNAs during tail regeneration in the lizard Anolis carolinensis. BMC Genomics 17:339

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gredler M, Larkins C, Leal F et al (2014) Evolution of external genitalia: insights from reptilian development. Sex Dev 8:311–326

    Article  PubMed  Google Scholar 

  33. Sanger T, Gredler M, Cohn M (2015) Resurrecting embryos of the tuatara, Sphenodon punctatus, to resolve vertebrate phallus evolution. Biol Lett 11:20150694

    Article  PubMed  PubMed Central  Google Scholar 

  34. Perriton C, Powles N, Chiang C et al (2002) Sonic hedgehog signaling from the urethral epithelium controls external genital development. Dev Biol 247:26–46

    Article  CAS  PubMed  Google Scholar 

  35. Gredler M, Seifert A, Cohn M (2015) Morphogenesis and patterning of the phallus and cloaca in the american alligator, Alligator mississippiensis. Sex Dev 9:53–67

    Article  PubMed  Google Scholar 

  36. Leal F, Cohn M (2015) Development of hemipenes in the ball python snake Python regius. Sex Dev 9:6–20

    Article  PubMed  Google Scholar 

  37. Larkins C, Cohn M (2015) Phallus development in the turtle Trachemys scripta. Sex Dev 9:34–42

    Article  PubMed  Google Scholar 

  38. Herrera A, Shuster S, Perriton C, Cohn M (2013) Developmental basis of phallus reduction during bird evolution. Curr Biol 23:1065–1074

    Article  CAS  PubMed  Google Scholar 

  39. Cohn M (2011) Development of the external genitalia: conserved and divergent mechanisms of appendage patterning. Dev Dyn 240:1108–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vonk F, Casewell N, Henkel C et al (2013) The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system. Proc Natl Acad Sci U S A 110:20651–20656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tollis M, Hutchins E, Kusumi K (2014) Reptile genomes open the frontier for comparative analysis of amniote development and regeneration. Int J Dev Biol 58:863–871

    Article  CAS  PubMed  Google Scholar 

  42. Liu Y, Zhou Q, Wang Y et al (2015) Gekko japonicus genome reveals evolution of adhesive toe pads and tail regeneration. Nat Commun 6:10033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Georges A, Li Q, Lian J et al (2015) High-coverage sequencing and annotated assembly of the genome of the Australian dragon lizard Pogona vitticeps. Gigascience 4:45

    Article  PubMed  PubMed Central  Google Scholar 

  44. Carroll S (2008) Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134:25–36

    Article  CAS  PubMed  Google Scholar 

  45. Gilles A, Averof M (2014) Functional genetics for all: engineered nucleases, CRISPR and the gene editing revolution. EvoDevo 5:43

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bassett A, Tibbit C, Ponting C, Liu J-L (2013) Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Rep 4:220–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nomura T, Yamashita W, Gotoh H, Ono K (2015) Genetic manipulation of reptilian embryos: toward an understanding of cortical development and evolution. Front Neurosci 9:45

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sanger T, Hime P, Johnson M et al (2008) Laboratory protocols for husbandry and embryo collection of Anolis lizards. Herp Rev 39:58–63

    Google Scholar 

Download references

Acknowledgments

We would like to thank P. Tschopp, R. Diaz, and M. Cohn for valuable discussion on the culturing protocols discussed herein. R. Dale supplied us with the bleaching protocol based on his work on zebrafish. This chapter is supported by laboratory start-up funds from Loyola University in Chicago to T.J.S. and an NSF Graduate Research Fellowship to B.K.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Sanger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Sanger, T.J., Kircher, B.K. (2017). Model Clades Versus Model Species: Anolis Lizards as an Integrative Model of Anatomical Evolution. In: Sheng, G. (eds) Avian and Reptilian Developmental Biology. Methods in Molecular Biology, vol 1650. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7216-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7216-6_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7215-9

  • Online ISBN: 978-1-4939-7216-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics