Skip to main content

Genetic Manipulation of the Avian Urogenital System Using In Ovo Electroporation

  • Protocol
  • First Online:
Book cover Avian and Reptilian Developmental Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1650))

Abstract

One of the advantages of the avian embryo as an experimental model is its in ovo development and hence accessibility for genetic manipulation. Electroporation has been used extensively in the past to study gene function in chicken and quail embryos . Readily accessible tissues such as the neural tube, somites, and limb bud, in particular, have been targeted. However, more inaccessible tissues, such as the embryonic urogenital system , have proven more challenging to study. Here, we describe the use of in ovo electroporation of TOL2 vectors or RCASBP avian viral vectors for the rapid functional analysis of genes involved in avian sex determination and urogenital development . In the context of the developing urogenital system , these vectors have inherent advantages and disadvantages, which will be considered here. Either vector can both be used for mis-expressing a gene and for targeting endogenous gene knockdown via expression of short hairpin RNAs (shRNAs). Both of these vectors integrate into the genome and are hence spread throughout developing tissues. Going forward, electroporation could be combined with CRISPR/Cas9 technology for targeted genome editing in the avian urogenital system .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burt DW (2004) The chicken genome and the developmental biologist. Mech Dev 121:1129–1135

    Article  CAS  PubMed  Google Scholar 

  2. Nakamura H, Katahira T, Sato T et al (2004) Gain- and loss-of-function in chick embryos by electroporation. Mech Dev 121:1137–1143

    Article  CAS  PubMed  Google Scholar 

  3. Rios AC, Marcelle C, Serralbo O (2012) Gene loss-of-function and live imaging in chick embryos. Methods Mol Biol 839:105–117

    Article  CAS  PubMed  Google Scholar 

  4. Itasaki N, Bel-Vialar S, Krumlauf R (1999) “shocking” developments in chick embryology: electroporation and in ovo gene expression. Nat Cell Biol 1:E203–E207

    Article  CAS  PubMed  Google Scholar 

  5. Chernet BT, Levin M (2012) A versatile protocol for mRNA electroporation of Xenopus laevis embryos. Cold Spring Harb Protoc 2012:447–452

    PubMed  PubMed Central  Google Scholar 

  6. Teh C, Parinov S, Korzh V (2005) New ways to admire zebrafish: progress in functional genomics research methodology. BioTechniques 38:897–906

    Article  CAS  PubMed  Google Scholar 

  7. Logan M, Tabin C (1998) Targeted gene misexpression in chick limb buds using avian replication-competent retroviruses. Methods 14:407–420

    Article  CAS  PubMed  Google Scholar 

  8. Andermatt I, Wilson N, Stoeckli ET (2014) In ovo electroporation of miRNA-based-plasmids to investigate gene function in the developing neural tube. Methods Mol Biol 1101:353–368

    Article  CAS  PubMed  Google Scholar 

  9. Farley EK (2013) Gene transfer in developing chick embryos: in ovo electroporation. Methods Mol Biol 1018:141–150

    Article  CAS  PubMed  Google Scholar 

  10. Blank MC, Chizhikov V, Millen KJ (2007) In ovo electroporations of HH stage 10 chicken embryos. J Vis Exp 9:408

    Google Scholar 

  11. Sato Y, Kasai T, Nakagawa S et al (2007) Stable integration and conditional expression of electroporated transgenes in chicken embryos. Dev Biol 305:616–624

    Article  CAS  PubMed  Google Scholar 

  12. Smith C, Roeszler K, Ohnesorg T et al (2009) The avian Z-linked gene DMRT1 is required for male sex determination in the chicken. Nature 461:267–271

    Article  CAS  PubMed  Google Scholar 

  13. Lambeth LS, Raymond CS, Roeszler KN et al (2014) Over-expression of DMRT1 induces the male pathway in embryonic chicken gonads. Dev Biol 389:160–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang SO, Mathur S, Hattem G et al (2010) Sex-dimorphic gene expression and ineffective dosage compensation of Z-linked genes in gastrulating chicken embryos. BMC Genomics 11:13

    Article  PubMed  PubMed Central  Google Scholar 

  15. Major AT, Smith CA (2016) Sex reversal in birds, sexual development. Sex Dev 10(5–6):288–300

    Article  CAS  PubMed  Google Scholar 

  16. Ayers KL, Lambeth LS, Davidson NM et al (2015) Identification of candidate gonadal sex differentiation genes in the chicken embryo using RNA-seq. BMC Genomics 16:704

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ayers KL, Davidson NM, Demiyah D et al (2013) RNA sequencing reveals sexually dimorphic gene expression before gonadal differentiation in chicken and allows comprehensive annotation of the W-chromosome. Genome Biol 14:R26

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhao D, McBride D, Nandi S et al (2010) Somatic sex identity is cell autonomous in the chicken. Nature 464:237–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hamburger V, Hamilton H (1951) A series of normal stages in the development of the chick embryo. J Morphol 88(1):49–92

    Article  CAS  PubMed  Google Scholar 

  20. Guioli S, Nandi S, Zhao D et al (2014) Gonadal asymmetry and sex determination in birds. Sex Dev 8:227–242

    Article  CAS  PubMed  Google Scholar 

  21. Guioli S, Sekido R, Lovell-Badge R (2007) The origin of the Mullerian duct in chick and mouse. Dev Biol 302:389–398

    Article  CAS  PubMed  Google Scholar 

  22. Takahashi Y, Watanabe T, Nakagawa S et al (2008) Transposon-mediated stable integration and tetracycline-inducible expression of electroporated transgenes in chicken embryos. Methods Cell Biol 87:271–280

    Article  CAS  PubMed  Google Scholar 

  23. Yokota Y, Saito D, Tadokoro R et al (2011) Genomically integrated transgenes are stably and conditionally expressed in neural crest cell-specific lineages. Dev Biol 353:382–395

    Article  CAS  PubMed  Google Scholar 

  24. Ayers KL, Cutting AD, Roeszler KN et al (2015) DMRT1 is required for Müllerian duct formation in the chicken embryo. Dev Biol 400:224–236

    Article  CAS  PubMed  Google Scholar 

  25. Sekido R, Lovell-Badge R (2007) Mechanisms of gonadal morphogenesis are not conserved between chick and mouse. Dev Biol 302:132–142

    Article  CAS  PubMed  Google Scholar 

  26. Hughes SH (2004) The RCAS system. Folia Biol (Praha) 50(3–4):107–119

    CAS  Google Scholar 

  27. Smith CA, Roeszler KN, Sinclair AH (2009) Robust and ubiquitous GFP expression in a single generation of chicken embryos using the avian retroviral vector, RCASBP. Differentiation 77:473–482

    Article  CAS  PubMed  Google Scholar 

  28. Ahronian LG, Lewis BC (2014) Generation of high-titer RCAS virus from DF1 chicken fibroblasts. Cold Spring Harb Protoc 2014:1161–1166

    PubMed  Google Scholar 

  29. Smith CA, Roeszler KN, Sinclair AH (2009) Genetic evidence against a role for W-linked histidine triad nucleotide binding protein (HINTW) in avian sex determination. Int J Dev Biol 53:59–67

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig A. Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Hirst, C.E., Serralbo, O., Ayers, K.L., Roeszler, K.N., Smith, C.A. (2017). Genetic Manipulation of the Avian Urogenital System Using In Ovo Electroporation. In: Sheng, G. (eds) Avian and Reptilian Developmental Biology. Methods in Molecular Biology, vol 1650. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7216-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7216-6_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7215-9

  • Online ISBN: 978-1-4939-7216-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics