Advertisement

Prion Diseases pp 145-158 | Cite as

Cell Death and Autophagy in Prion Diseases

  • Pawel P. LiberskiEmail author
Protocol
Part of the Neuromethods book series (NM, volume 129)

Abstract

Neuronal autophagy, like apoptosis, is one of the mechanisms of programmed cell death. In this chapter, we summarize current information about autophagy in naturally occurring and experimentally induced scrapie, Creutzfeldt-Jakob disease and Gerstmann-Sträussler-Scheinker syndrome, against the broad background of neural degenerations in prion diseases. Typically a sequence of events is observed: from a part of the neuronal cytoplasm sequestrated by concentric arrays of double membranes (phagophores) through the enclosure of the cytoplasm and membrane proliferation to a final transformation of the large area of the cytoplasm into a collection of autophagic vacuoles of different sizes. These autophagic vacuoles form not only in neuronal perikarya but also in neurites and synapses. On the basis of ultrastructural studies, we suggest that autophagy may play a major role in transmissible spongiform encephalopathies and may even participate in the formation of spongiform change.

Key words

Autophagy Apoptosis Prion diseases Neurons Ultrastructure 

Notes

Acknowledgments

This chapter is supported in part by Healthy Aging Research Center (HARC, FP7-REGPOT-2012-2013-1). Ms. Ewa Skarzynska, Mr. Ryszard Kurczewski, Ms. Elzbieta Naganska, Ms. Leokadia Romanska, and Mr. Kazimierz Smoktunowicz are kindly acknowledged for skilful technical assistance.

References

  1. 1.
    Ohsumi Y (2014) Historical landmarks of autophagy research. Cell Res 24(1):9–23PubMedCrossRefGoogle Scholar
  2. 2.
    Schweichel JU, Merker HJ (1973) The morphology of various types of cell death in prenatal tissues. Teratology 7(3):253–266PubMedCrossRefGoogle Scholar
  3. 3.
    Klionsky DJ, Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Science 290(5497):1717–1721PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Reggiori F, Klionsky DJ (2002) Autophagy in the eukaryotic cell. Eukaryot Cell 1(1):11–21PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Wang C-W, Klionsky DJ (2003) The molecular mechanism of autophagy. Mol Med 9(3-4):65–76PubMedPubMedCentralGoogle Scholar
  6. 6.
    Yuan J, Lipinski M, Degterev A (2003) Diversity of the mechanisms of neuronal cell death. Neuron 40(2):401–413PubMedCrossRefGoogle Scholar
  7. 7.
    Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26(4):239–257PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Kroemer G, Jaattela M (2005) Lysosomes and autophagy in cell death control. Nat Rev Cancer 5(11):886–897PubMedCrossRefGoogle Scholar
  9. 9.
    Bursch W (2001) The autophagosomal-lysosomal compartment in programmed cell death. Cell Death Differ 8(6):569–581PubMedCrossRefGoogle Scholar
  10. 10.
    Bursch W (2004) Multiple cell death programs: Charon’s lifts to hades. FEMS Yeast Res 5(2):101–110PubMedCrossRefGoogle Scholar
  11. 11.
    Inbal B, Bialik S, Sabanay I et al (2002) DAP kinase and DRP-1 mediate membrane blebbing and the formation of autophagic vesicles during programmed cell death. J Cell Biol 157(3):455–468PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Liberski PP, Sikorska B, Bratosiewicz-Wasik J et al (2004) Neuronal cell death in transmissible spongiform encephalopathies (prion diseases) revisited: from apoptosis to autophagy. Int J Biochem Cell Biol 36(12):2473–2490PubMedCrossRefGoogle Scholar
  13. 13.
    Klionsky DJ, Abdelmohsen K, Abe A et al (2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12(1):1–222PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Clarke PG (1990) Developmental cell death: morphological diversity and multiple mechanisms. Anat Embryol (Berl) 181:195–213CrossRefGoogle Scholar
  15. 15.
    Sikorska B, Liberski PP, Brown P (2007) Neuronal autophagy and aggresomes constitute a consistent part of neurodegeneration in experimental scrapie. Folia Neuropathol 45(4):170–178PubMedGoogle Scholar
  16. 16.
    Garcia-Mata R, Gao YS, Sztul E (2002) Hassles with taking out the garbage: aggravating aggresomes. Traffic 3(6):388–396PubMedCrossRefGoogle Scholar
  17. 17.
    Kristiansen M, Messennger MJ, Klöhn PC et al (2005) Disease-related prion protein forms aggresomes in neuronal cells leading to caspase activation and apoptosis. J Biol Chem 280(46):38851–38861PubMedCrossRefGoogle Scholar
  18. 18.
    Cohen E, Taraboulos A (2003) Scrapie-like prion protein accumulates in aggresomes of cyclosporin A-treated cells. EMBO J 22(3):404–417PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Dorandeu A, Wingertsmann L, Chretien F et al (1998) Neuronal apoptosis in fatal familial insomnia. Brain Pathol 8(3):531–537PubMedCrossRefGoogle Scholar
  20. 20.
    Fraser JR (2002) What is the basis of transmissible spongiform encephalopathy induced neurodegeneration and it be repaired? Neuropathol Appl Neurobiol 28(1):1–11PubMedCrossRefGoogle Scholar
  21. 21.
    Fraser JR, Halliday WG, Brown D, Belichenko P, Jeffrey M (1996) Mechanisms of scrapie-induced neuronal cell death. In: Court L, Dodet B (eds) Transmissible subacute spongiform encephalopathies: prion disease. IIIrd International Symposium on transmissible subacute spongiform encephalopathies: prion disease, Val-de-Grace Paris, France. Elsevier, Amsterdam, Oxford, Paris, pp 107–112Google Scholar
  22. 22.
    Jesionek-Kupnicka D, Buczynski J, Kordek R, Liberski PP (1999) Neuronal loss and apoptosis in experimental Creutzfeldt-Jakob disease in mice. Folia Neuropathol 37(4):283–286PubMedGoogle Scholar
  23. 23.
    Jesionek-Kupnicka D, Buczynski J, Kordek R et al (1997) Programmed cell death (apoptosis) in Alzheimer’s disease and Creutzfeldt-Jakob disease. Folia Neuropathol 35(4):233–235PubMedGoogle Scholar
  24. 24.
    Jesionek-Kupnicka D, Kordek R, Buczynski J, Liberski PP (2001) Apoptosis in relation to neuronal loss in experimental Creutzfeldt-Jakob disease in mice. Acta Neurobiol Exp 61:13–19Google Scholar
  25. 25.
    Migheli A, Attanasio A, Lee WH et al (1995) Detection of apoptosis in weaver cerebellum by electron microscopic in situ end-labeling of fragmented DNA. Neurosci Lett 199(1):53–56PubMedCrossRefGoogle Scholar
  26. 26.
    Giese A, Groschup MH, Hess B, Kretzschmar HA (1995) Neuronal cell death in scrapie-infected mice is due to apoptosis. Brain Pathol 5(3):213–221PubMedCrossRefGoogle Scholar
  27. 27.
    Giese A, Kretzschmar HA (2001) Prion-induced neuronal damage-the mechanisms of neuronal destruction in the subacute spongiform encephalopathies. Curr Top Microbiol Immunol 253:203–217PubMedGoogle Scholar
  28. 28.
    Lucassen PJ, Williams A, Chung WC, Fraser H (1995) Detection of apoptosis in murine scrapie. Neurosci Lett 198(3):185–188PubMedCrossRefGoogle Scholar
  29. 29.
    Williams A, Lucassen PJ, Ritchie D, Bruce M (1997) PrP deposition, microglial activation, and neuronal apoptosis in murine scrapie. Exp Neurol 144(2):433–438PubMedCrossRefGoogle Scholar
  30. 30.
    Kretzschmar HA, Giese A, Brown DR et al (1997) Cell death in prion disease. J Neural Transm Suppl 50:191–210PubMedCrossRefGoogle Scholar
  31. 31.
    Kretzschmar HA, Giese A, Brown DR, Herms J, Schmidt B, Groschup MH (1996) Cell death in prion disease. In: Court L, Dodet B (eds) Transmissible Subacute spongiform Encephalopathies: prion disease. IIIrd International Symposium on transmissible subacute spongiform encephalopathies: prion disease. Val-de-Grace, Paris, France. Elsevier, Amsterdam, Oxford, Paris, pp 97–106Google Scholar
  32. 32.
    Kretzschmar HA, Giese A, Herms J, Brown DR (1998) Neuronal degeneration and cell death in prion disease. In: Morrison DRO (ed) Prions and brain diseases in animals and humans. Plenum Press, New York, pp 253–268CrossRefGoogle Scholar
  33. 33.
    Jamieson E, Jeffrey M, Ironside JW, Fraser JR (2001) Apoptosis and dendritic dysfunction precede prion protein accumulation in 87V scrapie. Neuroreport 12(10):2147–2153PubMedCrossRefGoogle Scholar
  34. 34.
    Theil D, Fatzer R, Meyer R et al (1997) Nuclear DNA fragmentation and immune reactivity in bovine spongiform encephalopathy. J Comp Pathol 121:357–367CrossRefGoogle Scholar
  35. 35.
    Fairbairn DW, Carnahan KG, Thwaits RN et al (1994) Detection of apoptosis induced DNA cleavage in scrapie-infected sheep brain. FEMS Microbiol Lett 115(2-3):341–346PubMedCrossRefGoogle Scholar
  36. 36.
    Ferrer I (1994) Nuclear DNA fragmentation in Creutzfeldt-Jakob disease: does a mere positive in situ nuclear end-labeling indicate apoptosis? Acta Neuropathol (Berl) 97:5–12CrossRefGoogle Scholar
  37. 37.
    Gray F, Chretien F, Adle-Biassette H et al (1999) Neuronal apoptosis in Creutzfeldt-Jakob disease. J Neuropathol Exp Neurol 58(4):321–328PubMedCrossRefGoogle Scholar
  38. 38.
    Yuan Z, Yang L, Chen B et al (2015) Protein misfolding cyclic amplification induces the conversion of recombinant prion protein to PrP oligomers causing neuronal apoptosis. J Neurochem 133(5):722–729PubMedCrossRefGoogle Scholar
  39. 39.
    Brown DR (1998) Prion protein-overexpressing cells show altered response to a neurotoxic prion protein peptide. J Neurosci Res 54(3):331–340PubMedCrossRefGoogle Scholar
  40. 40.
    Brown DR (1999) Prion protein peptide neurotoxicity can be mediated by astrocytes. J Neurochem 73(3):1105–1113PubMedCrossRefGoogle Scholar
  41. 41.
    Brown DR, Besinger A, Herms JW, Kretzschmar HA (1998) Microglial expression of the prion protein. Neuroreport 9(7):1425–1429PubMedCrossRefGoogle Scholar
  42. 42.
    Brown DR, Mohn CM (1998) Astrocytic glutamate uptake and prion protein expression. Glia 25:282–292CrossRefGoogle Scholar
  43. 43.
    Hafiz FB, Brown DR (2000) A model for the mechanism of astrogliosis in prion disease. Mol Cell Neurosci 16(3):221–232PubMedCrossRefGoogle Scholar
  44. 44.
    Ye X, Scallet AC, Kascsak RJ, Carp RI (1998) Astrocytosis and amyloid deposition in scrapie-infected hamsters. Brain Res 809(2):277–287PubMedCrossRefGoogle Scholar
  45. 45.
    Bursch W, Ellinger A (2005) Autophagy—a basic mechanism and a potential role for neurodegeneration. Folia Neuropathol 43(4):297–310PubMedGoogle Scholar
  46. 46.
    Xue L, Fletcher GC, Tolkovsky AM (1999) Autophay is activated by apoptotic signalling in sympathetic neurons: an alternative death execution. Mol Cell Neurosci 14(3):180–198PubMedCrossRefGoogle Scholar
  47. 47.
    Bursch W, Hochegger K, Torok L et al (2000) Autophagic and apoptotic types of programmed cell death exhibit different fates of cytoskeletal filaments. J Cell Sci 113 ( Pt 7):1189–1198Google Scholar
  48. 48.
    Filonova LH, Bozhkov PV, Brukhin VB et al (2000) Two waves of programmed cell death occur during formation and development of somatic embryos in the gymnosperm, Norway spruce. J Cell Sci 113 Pt 24:4399–4411PubMedGoogle Scholar
  49. 49.
    Hariri M, Millane G, Guimond M-P et al (2000) Biogenesis of multilamellar bodies via autophagy. Mol Biol Cell 11(1):255–268PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Sattler T, Mayer A (2000) Cell-free reconstitution of microautophagic vacuole invagination and vesicle formation. J Cell Biol 151(3):529–538PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Graeber MB, Moran LB (2002) Mechanisms of cell death in neurodegenerative diseases: fashion, fiction, and facts. Brain Pathol 12(3):385–390PubMedCrossRefGoogle Scholar
  52. 52.
    Stadelmann C, Deckwerth TL, Srinivasan A et al (1999) Activation of caspase-3 in single neurons and autophagic granules of granulovacuolar degeneration in Alzheimer’s disease. Evidence for apoptotic cell death. Am J Pathol 155(5):1459–1466PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Anglade P, Vyas S, Javoy-Agid F et al (1997) Apoptosis and autophagy in nigral neurons of patients with Parkinson’s disease. Histol Histopathol 12(1):25–31PubMedGoogle Scholar
  54. 54.
    Kegel KB, Kim M, Sapp E et al (2002) Huntingtin expression stimulates endosomal-lysosomal activity, endosome tubulation, and autophagy. J Neurosci 20:7268–7278Google Scholar
  55. 55.
    Liberski PP, Asher DM, Yanagihara R et al (1989) Serial ultrastructural studies of scrapie in hamsters. J Comp Pathol 101(4):429–442PubMedCrossRefGoogle Scholar
  56. 56.
    Liberski PP, Gajdusek DC, Brown P (2002) How do neurons degenerate in prion diseases or transmissible spongiform encephalopathies (TSEs): neuronal autophagy revisited. Acta Neurobiol Exp 62:141–148Google Scholar
  57. 57.
    Liberski PP, Streichenberger N, Giraud P et al (2005) Ultrastructural pathology of prion diseases revisited: brain biopsy studies. Neuropathol Appl Neurobiol 31(1):88–96PubMedCrossRefGoogle Scholar
  58. 58.
    Liberski PP, Yanagihara R, Gibbs CJ Jr, Gajdusek DC (1992) Neuronal autophagic vacuoles in experimental scrapie and Creutzfeldt-Jakob disease. Acta Neuropathol 83(2):134–139PubMedCrossRefGoogle Scholar
  59. 59.
    Sikorska B, Liberski PP, Giraud P et al (2004) Autophagy is a part of ultrastructural synaptic pathology in Creutzfeldt-Jakob disease: a brain biopsy study. Int J Biochem Cell Biol 36(12):2563–2573PubMedCrossRefGoogle Scholar
  60. 60.
    Boellaard JW, Kao M, Schlote W, Diringer H (1991) Neuronal autophagy in experimental scrapie. Acta Neuropathol (Berl) 82(3):225–228CrossRefGoogle Scholar
  61. 61.
    Cronier S, Carimalo J, Schaeffer B, Jaumain E, Béringue V, Miquel MC, Laude H, Peyrin JM (2012) Endogenous prion protein conversion is required for prion-induced neuritic alterations and neuronal death. FASEB J 26(9):3854–3861PubMedCrossRefGoogle Scholar
  62. 62.
    Joshi-Barr S, Bett C, Chiang WC, Trejo M, Goebel HH, Sikorska B, Liberski P, Raeber A, Lin JH, Masliah E, Sigurdson CJ (2014) De novo prion aggregates trigger autophagy in skeletal muscle. J Virol 88(4):2071–2082PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Stumpf MPH, Krakauer DC (2000) Mapping the parameters of prion-induced neuropathology. Proc Natl Acad Sci U S A 97(19):10573–10577PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Bursch W, Ellinger A, Gerner C, Schulte-Hermann R (2004) Autophagocytosis and programmed cell death. In: Klionsky D (ed) Autophagy. Landes Bioscience, Georgetown, TX, pp 290–306Google Scholar
  65. 65.
    Eskelinen EL (2005) Doctor Jekyll and Mister Hyde: autophagy can promote both cell survival and cell death. Cell Death Differ 12:1468–1472PubMedCrossRefGoogle Scholar
  66. 66.
    Lum JJ, Bauer DE, Kong M et al (2005) Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120(2):237–248PubMedCrossRefGoogle Scholar
  67. 67.
    Gonzalez-Polo RA, Boya P, Pauleau AL et al (2005) The apoptosis/autophagy paradox: autophagic vacuolization before apoptotic death. J Cell Sci 118(14):3091–3102PubMedCrossRefGoogle Scholar
  68. 68.
    Harris DA (2003) Trafficking, turnover and membrane topology of PrP. Br Med Bull 66(1):71–85PubMedCrossRefGoogle Scholar
  69. 69.
    Borchelt DR, Taraboulos A, Prusiner SB (1992) Evidence for synthesis of scrapie prion protein in the endocytic pathway. J Biol Chem 267(23):16188–16199PubMedGoogle Scholar
  70. 70.
    Caughey B, Raymond GJ (1991) The scrapie-associated form of PrP is made from a cell surface precursor that is both protease- and phospholipase-sensitive. J Biol Chem 266:18217–18223PubMedGoogle Scholar
  71. 71.
    Caughey B, Raymond GJ, Ernst D, Race RE (1991) N-terminal truncation of the scrapie-associated form of PrP by lysosomal protease(s): implications regarding the site of conversion of PrP to the protease-resistant state. J Virol 65(12):6597–6603PubMedPubMedCentralGoogle Scholar
  72. 72.
    Kopito RR (2000) Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol 10(12):524–530PubMedCrossRefGoogle Scholar
  73. 73.
    Jeffrey M, Goodbrand IA, Goodsir A (1995) Pathology of the transmissible spongiform encephalopathies with special emphasis on ultrastructure. Micron 26(3):277–298PubMedCrossRefGoogle Scholar
  74. 74.
    Jeffrey M, Scott JR, Williams A, Fraser H (2002) Ultrastructural features of spongiform encephalopathy transmitted to mice from three species of bovidae. Acta Neuropathol (Berl) 84:559–569CrossRefGoogle Scholar
  75. 75.
    Liberski PP, Mori S (1997) The Echigo-1: a panencephalopathic strain of Creutzfeldt-Jakob disease: a passage to hamsters and ultrastructural studies. Folia Neuropathol 3583:250–254Google Scholar
  76. 76.
    Myohara M (2004) Real-time observation of autophagic programmed cell death of drosophila salivary glands in vitro. Dev Genes Evol 214(2):99–104PubMedCrossRefGoogle Scholar
  77. 77.
    Beck E (1988) Lesions akin to transmissible spongiform encephalopathy in the brains of rats inoculated with immature cerebellum. Acta Neuropathol (Berl) 76(3):295–305CrossRefGoogle Scholar
  78. 78.
    Gibson PH, Liberski PP (1987) An electron and light microscopic study of the numbers of dystrophic neurites and vacuoles in the hippocampus of mice infected intracerebrally with scrapie. Acta Neuropathol (Berl) 73(4):379–382CrossRefGoogle Scholar
  79. 79.
    Liberski PP (1987) Electron microscopic observations on dystrophic neurites in hamster brains infected with the 263K strain of scrapie. J Comp Pathol 97(1):35–39PubMedCrossRefGoogle Scholar
  80. 80.
    Liberski PP, Budka H (1999) Neuroaxonal pathology in Creutzfeldt-Jakob disease. Acta Neuropathol (Berl) 97(4):329–334CrossRefGoogle Scholar
  81. 81.
    Liberski PP, Budka H, Yanagihara R, Gajdusek DC (1995) Neuroaxonal dystrophy in experimental Creutzfeldt-Jakob disease: electron microscopical and immunohistochemical demonstration of neurofilament accumulations within affected neurites. J Comp Pathol 112(3):243–255PubMedCrossRefGoogle Scholar
  82. 82.
    Nixon RA, Wegiel J, Kumar A et al (2005) Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol 64(2):113–122PubMedCrossRefGoogle Scholar
  83. 83.
    Liberski PP, Kloszewska I, Boellaard I et al (1995) Dystrophic neurites of Alzheimer’s disease and Gerstmann-Sträussler-Scheinker’s disease dissociate from the formation of paired helical filaments. Alzheimer’s Res 1:89–93Google Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Department of Molecular Pathology and NeuropathologyMedical University LodzLodzPoland

Personalised recommendations