Advertisement

Nonhuman Primates in Research on Transmissible Spongiform Encephalopathies

  • David M. AsherEmail author
  • Pedro Piccardo
  • Luisa Gregori
Protocol
  • 371 Downloads
Part of the Neuromethods book series (NM, volume 129)

Abstract

Nonhuman primates played an important role in early studies of the human transmissible spongiform encephalopathies (TSEs): kuru, Creutzfeldt-Jakob disease (CJD), and similar degenerative diseases of the nervous system. The high cost of procuring and maintaining nonhuman primates and growing public resistance have discouraged their use for TSE research in recent years. Invasive research with chimpanzees has effectively ended in the USA. A few situations remain, however, in which laboratory primates offer advantages for biomedical research on TSEs: (1) transmission attempts when etiology and host range of a human disease are not yet known or when more accessible tests to detect an infectious agent are either unavailable or not feasible; (2) studies of pathogenesis using monkeys instead of rodents may be more directly relevant to a human TSE; and (3) preparation of certain biological reference materials, such as blood or tissues infected with a human-derived TSE agent, might require a species of animal genetically close to humans because of antigenically similar prion proteins.

Key words

Transmissible spongiform encephalopathy (TSE) Prion Creutzfeldt-Jakob disease (CJD) Monkey Macaque Chimpanzee Squirrel monkey Pathogenesis Biological reference material 

Notes

Acknowledgements

The authors are grateful to Lewis Shankel, Steven Harbaugh, Anthony Cook, F. Salih Muhammad, Jill Ascher, and John Dennis for expert care of monkeys, and Oksana Yakovleva and Juraj Cervenak for carefully preparing the Western immunoblot and histological sections. Arifa Khan read the manuscript critically and offered helpful suggestions. We owe special thanks to the late Kitty L. Pomeroy for her many years of dedicated technical assistance.

References

  1. 1.
    Gajdusek DC, Zigas V (1957) Degenerative disease of the central nervous system in New Guinea; the endemic occurrence of kuru in the native population. N Engl J Med 257(20):974–978CrossRefPubMedGoogle Scholar
  2. 2.
    Hadlow WJ (1959) Scrapie and kuru. Lancet 2(7097):289–290CrossRefGoogle Scholar
  3. 3.
    Gajdusek DC, Gibbs CJ Jr, Alpers M (1966) Experimental transmission of a kuru-like syndrome in chimpanzees. Nature 209:794–796CrossRefPubMedGoogle Scholar
  4. 4.
    Beck E, Daniel PM, Alpers M, Gajdusek DC, Gibbs CJ Jr (1966) Experimental “kuru” in chimpanzees. A pathological report. Lancet 2(7472):1056–1059CrossRefPubMedGoogle Scholar
  5. 5.
    Gajdusek DC, Gibbs CJ Jr, Asher DM, David E (1968) Transmission of experimental kuru to the spider monkey (Ateles geoffreyi). Science 162(3854):693–694CrossRefPubMedGoogle Scholar
  6. 6.
    Gibbs CJ Jr, Gajdusek DC, Asher DM, Alpers MP, Beck E, Daniel PM, Matthews WB (1968) Creutzfeldt-Jakob disease (spongiform encephalopathy): transmission to the chimpanzee. Science 161(3839):388–389CrossRefPubMedGoogle Scholar
  7. 7.
    Manuelidis EE, Kim J, Angelo JN, Manuelidis L (1976) Serial propagation of Creutzfeldt-Jakob disease in guinea pigs. Proc Natl Acad Sci U S A 73(1):223–227CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Brown P, Gibbs CJ Jr, Rodgers-Johnson P, Asher DM, Sulima MP, Bacote A, Goldfarb LG, Gajdusek DC (1994) Human spongiform encephalopathy: the National Institutes of Health series of 300 cases of experimentally transmitted disease. Ann Neurol 35(5):513–529CrossRefPubMedGoogle Scholar
  9. 9.
    Asher DM, Gibbs CJ Jr, Sulima MP, Bacote A, Amyx H, Gajdusek DC (1993) Transmission of human spongiform encephalopathies to experimental animals: comparison of the chimpanzee and squirrel monkey. Dev Biol Stand 80:9–13PubMedGoogle Scholar
  10. 10.
    Anonymous (1927) Obituary. Adrian Stokes. Br Med J 2(3482):615–618Google Scholar
  11. 11.
    Stokes A, Bauer J, Hudson N (1928) The transmission of yellow fever to Macacus rhesus. J Am Med Assoc 90(4):253–254CrossRefGoogle Scholar
  12. 12.
    Stokes A, Bauer JH, Hudson NP (1928) Experimental transmission of yellow fever to laboratory animals. Am J Trop Med 8(2):103–164CrossRefGoogle Scholar
  13. 13.
    Howe HA, Bodian D (1942) Neural mechanisms in poliomyelitis. The Commonwealth Fund, New YorkGoogle Scholar
  14. 14.
    Race B, Meade-White KD, Miller MW, Barbian KD, Rubenstein R, LaFauci G, Cervenakova L, Favara C, Gardner D, Long D, Parnell M, Striebel J, Priola SA, Ward A, Williams ES, Race R, Chesebro B (2009) Susceptibilities of nonhuman primates to chronic wasting disease. Emerg Infect Dis 15(9):1366–1376CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Telling GC, Scott M, Hsiao KK, Foster D, Yang SL, Torchia M, Sidle KC, Collinge J, DeArmond SJ, Prusiner SB (1994) Transmission of Creutzfeldt-Jakob disease from humans to transgenic mice expressing chimeric human-mouse prion protein. Proc Natl Acad Sci U S A 91(21):9936–9940CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Botsios S, Manuelidis L (2016) CJD and scrapie require agent-sssociated nucleic acids for infection. J Cell Biochem 117(8):1947–1958. doi: 10.1002/jcb.25495 CrossRefPubMedGoogle Scholar
  17. 17.
    Gibbs CJ Jr, Asher DM, Brown PW, Fradkin JE, Gajdusek DC (1993) Creutzfeldt-Jakob disease infectivity of growth hormone derived from human pituitary glands. N Engl J Med 328(5):358–359CrossRefPubMedGoogle Scholar
  18. 18.
    Gibbs CJ Jr, Asher DM, Kobrine A, Amyx HL, Sulima MP, Gajdusek DC (1994) Transmission of Creutzfeldt-Jakob disease to a chimpanzee by electrodes contaminated during neurosurgery. J Neurol Neurosurg Psychiatry 57(6):757–758CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Huang Y, Gregori L, Anderson SA, Asher DM, Yang H (2014) Development of dose-response models of Creutzfeldt-Jakob disease infection in nonhuman primates for assessing the risk of transfusion-transmitted variant Creutzfeldt-Jakob disease. J Virol 88(23):13732–13736CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Piccardo P, Cervenakova L, Vasilyeva I, Yakovleva O, Bacik I, Cervenak J, McKenzie C, Kurillova L, Gregori L, Pomeroy K, Asher DM (2011) Candidate cell substrates, vaccine production, and transmissible spongiform encephalopathies. Emerg Infect Dis 17(12):2262–2269CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) (2015) The CITES Appendices. https://www.cites.org/eng/app/index.php. Accessed 17 Dec 2015
  22. 22.
    Gibbs CJ Jr, Amyx HL, Bacote A, Masters CL, Gajdusek DC (1980) Oral transmission of kuru, Creutzfeldt-Jakob disease, and scrapie to nonhuman primates. J Infect Dis 142(2):205–208CrossRefPubMedGoogle Scholar
  23. 23.
    Comoy EE, Mikol J, Luccantoni-Freire S, Correia E, Lescoutra-Etchegaray N, Durand V, Dehen C, Andreoletti O, Casalone C, Richt JA, Greenlee JJ, Baron T, Benestad SL, Brown P, Deslys JP (2015) Transmission of scrapie prions to primate after an extended silent incubation period. Sci Rep 5:11573. doi: 10.1038/srep11573 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Marsh RF, Kincaid AE, Bessen RA, Bartz JC (2005) Interspecies transmission of chronic wasting disease prions to squirrel monkeys (Saimiri sciureus). J Virol 79(21):13794–13796CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Belay ED, Maddox RA, Williams ES, Miller MW, Gambetti P, Schonberger LB (2004) Chronic wasting disease and potential transmission to humans. Emerg Infect Dis 10(6):977–984CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Mawhinney S, Pape WJ, Forster JE, Anderson CA, Bosque P, Miller MW (2006) Human prion disease and relative risk associated with chronic wasting disease. Emerg Infect Dis 12(10):1527–1535CrossRefPubMedGoogle Scholar
  27. 27.
    Anderson CA, Bosque P, Filley CM, Arciniegas DB, Kleinschmidt-Demasters BK, Pape WJ, Tyler KL (2007) Colorado surveillance program for chronic wasting disease transmission to humans: lessons from 2 highly suspicious but negative cases. Arch Neurol 64(3):439–441CrossRefPubMedGoogle Scholar
  28. 28.
    World Health Organization (2006) WHO guidelines on tissue infectivity distribution in transmissible spongiform encephalopathies. In: Padilla A, Asher DM (eds). Geneva. http://www.who.int/bloodproducts/TSEREPORT-LoRes.pdf. Accessed 18 Apr 2016
  29. 29.
    World Health Organization (2010) WHO tables on tissue infectivity distribution in transmissible spongiform encephalopathies. Updated. In: Padilla A, Asher DM (eds). Geneva. http://www.who.int/bloodproducts/tablestissueinfectivity.pdf. Accessed 14 Apr 2016
  30. 30.
    Bueler H, Aguzzi A, Sailer A, Greiner RA, Autenried P, Aguet M, Weissmann C (1993) Mice devoid of PrP are resistant to scrapie. Cell 73(7):1339–1347CrossRefPubMedGoogle Scholar
  31. 31.
    Owen F, Poulter M, Lofthouse R, Collinge J, Crow TJ, Risby D, Baker HF, Ridley RM, Hsiao K, Prusiner SB (1989) Insertion in prion protein gene in familial Creutzfeldt-Jakob disease. Lancet 1(8628):51–52CrossRefPubMedGoogle Scholar
  32. 32.
    Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science 216:136–144CrossRefPubMedGoogle Scholar
  33. 33.
    Lasmezas CI, Comoy E, Hawkins S, Herzog C, Mouthon F, Konold T, Auvre F, Correia E, Lescoutra-Etchegaray N, Sales N, Wells G, Brown P, Deslys JP (2005) Risk of oral infection with bovine spongiform encephalopathy agent in primates. Lancet 365(9461):781–783CrossRefGoogle Scholar
  34. 34.
    Piccardo P, Cervenak J, Bu M, Miller L, Asher DM (2014) Complex proteinopathy with accumulations of prion protein, hyperphosphorylated tau, alpha-synuclein and ubiquitin in experimental bovine spongiform encephalopathy of monkeys. J Gen Virol 95(Pt 7):1612–1618CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Piccardo P, Cervenak J, Yakovleva O, Gregori L, Pomeroy K, Cook A, Muhammad FS, Seuberlich T, Cervenakova L, Asher DM (2012) Squirrel monkeys (Saimiri sciureus) infected with the agent of bovine spongiform encephalopathy develop tau pathology. J Comp Pathol 147(1):84–93CrossRefPubMedGoogle Scholar
  36. 36.
    Wells GA, Hancock RD, Cooley WA, Richards MS, Higgins RJ, David GP (1989) Bovine spongiform encephalopathy: diagnostic significance of vacuolar changes in selected nuclei of the medulla oblongata. Vet Rec 125(21):521–524CrossRefPubMedGoogle Scholar
  37. 37.
    Collinge J, Sidle KC, Meads J, Ironside J, Hill AF (1996) Molecular analysis of prion strain variation and the aetiology of ‘new variant’ CJD. Nature 383(6602):685–690CrossRefPubMedGoogle Scholar
  38. 38.
    Piccardo P, Manson JC, King D, Ghetti B, Barron RM (2007) Accumulation of prion protein in the brain that is not associated with transmissible disease. Proc Natl Acad Sci U S A 104(11):4712–4717CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Barron RM, Campbell SL, King D, Bellon A, Chapman KE, Williamson RA, Manson JC (2007) High titers of transmissible spongiform encephalopathy infectivity associated with extremely low levels of PrPSc in vivo. J Biol Chem 282(49):35878–35886CrossRefPubMedGoogle Scholar
  40. 40.
    Manuelidis L (2013) Infectious particles, stress, and induced prion amyloids: a unifying perspective. Virulence 4(5):373–383CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Balkema-Buschmann A, Eiden M, Hoffmann C, Kaatz M, Ziegler U, Keller M, Groschup MH (2011) BSE infectivity in the absence of detectable PrP(Sc) accumulation in the tongue and nasal mucosa of terminally diseased cattle. J Gen Virol 92(Pt 2):467–476CrossRefPubMedGoogle Scholar
  42. 42.
    Wang XF, Dong CF, Zhang J, Wan YZ, Li F, Huang YX, Han L, Shan B, Gao C, Han J, Dong XP (2008) Human tau protein forms complex with PrP and some GSS- and fCJD-related PrP mutants possess stronger binding activities with tau in vitro. Mol Cell Biochem 310(1–2):49–55CrossRefPubMedGoogle Scholar
  43. 43.
    Giasson BI, Forman MS, Higuchi M, Golbe LI, Graves CL, Kotzbauer PT, Trojanowski JQ, Lee VM (2003) Initiation and synergistic fibrillization of tau and alpha-synuclein. Science 300(5619):636–640CrossRefPubMedGoogle Scholar
  44. 44.
    Croes EA, Roks G, Jansen GH, Nijssen PC, van Duijn CM (2002) Creutzfeldt-Jakob disease 38 years after diagnostic use of human growth hormone. J Neurol Neurosurg Psychiatry 72(6):792–793CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Collinge J, Whitfield J, McKintosh E, Beck J, Mead S, Thomas DJ, Alpers MP (2006) Kuru in the 21st century—an acquired human prion disease with very long incubation periods. Lancet 367(9528):2068–2074CrossRefPubMedGoogle Scholar
  46. 46.
    World Health Organization (2015) Blood products and related biologicals. International references. http://www.who.int/bloodproducts/ref_materials/en/. Accessed 18 Apr 2016
  47. 47.
    Minor P, Newham J, Jones N, Bergeron C, Gregori L, Asher D, van Engelenburg F, Stroebel T, Vey M, Barnard G, Head M, Working Group on International Reference Materials for the Diagnosis and Study of Transmissible Spongiform, Encephalopathies (2004) Standards for the assay of Creutzfeldt-Jakob disease specimens. J Gen Virol 85(Pt 6):1777–1784CrossRefPubMedGoogle Scholar
  48. 48.
    Editorial team (2007) Fourth case of transfusion-associated vCJD infection in the United Kingdom. Euro Surveill 12:1–2Google Scholar
  49. 49.
    Llewelyn CA, Hewitt PE, Knight RS, Amar K, Cousens S, Mackenzie J, Will RG (2004) Possible transmission of variant Creutzfeldt-Jakob disease by blood transfusion. Lancet 363(9407):417–421CrossRefPubMedGoogle Scholar
  50. 50.
    Peden AH, Head MW, Ritchie DL, Bell JE, Ironside JW (2004) Preclinical vCJD after blood transfusion in a PRNP codon 129 heterozygous patient. Lancet 364(9433):527–529CrossRefGoogle Scholar
  51. 51.
    Peden A, McCardle L, Head MW, Love S, Ward HJ, Cousens SN, Keeling DM, Millar CM, Hill FG, Ironside JW (2010) Variant CJD infection in the spleen of a neurologically asymptomatic UK adult patient with haemophilia. Haemophilia 16(2):296–304CrossRefPubMedGoogle Scholar
  52. 52.
    Crowder LA, Schonberger LB, Dodd RY, Steele WR (2017) Creutzfeldt-Jakob disease lookback study: 21 years of surveillance for transfusion transmission risk. Transfusion (April). do:i 10.1111/trf.14145
  53. 53.
    Urwin P, Thanigaikumar K, Ironside JW, Molesworth A, Knight KS, Hewitt PE, Llewelyn C, Mackenzie J, Will RG (2017) Sporadic Creutzfeldt-Jakob disease in 2 plasma product recipients, United Kingdom. Emerg Infect Dis 23(6):893–897Google Scholar
  54. 54.
    United States Food and Drug Administration (2006) Potential screening assays to detect blood and plasma donors infected with agents of transmissible spongiform encephalopathies (TSE agents or prions). Issue Summary; Transmissible Spongiform Encephalopathies Advisory Committee Meeting, September 19, 2006. http://www.fda.gov/ohrms/dockets/ac/06/briefing/2006-4240B1_2.pdf. Accessed 18 Apr 2016
  55. 55.
    Houston F, McCutcheon S, Goldmann W, Chong A, Foster J, Siso S, Gonzalez L, Jeffrey M, Hunter N (2008) Prion diseases are efficiently transmitted by blood transfusion in sheep. Blood 112(12):4739–4745CrossRefPubMedGoogle Scholar
  56. 56.
    Gregori L, Yang H, Anderson S (2011) Estimation of variant Creutzfeldt-Jakob disease infectivity titers in human blood. Transfusion 51(12):2596–2602CrossRefPubMedGoogle Scholar
  57. 57.
    McDowell KL, Nag N, Franco Z, Bu M, Piccardo P, Cervenak J, Deslys JP, Comoy E, Asher DM, Gregori L (2015) Blood reference materials from macaques infected with variant Creutzfeldt-Jakob disease agent. Transfusion 55(2):405–412CrossRefPubMedGoogle Scholar
  58. 58.
    Saborio GP, Permanne B, Soto C (2001) Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature 411(6839):810–813CrossRefPubMedGoogle Scholar
  59. 59.
    Lescoutra-Etchegaray N, Jaffre N, Sumian C, Durand V, Correia E, Mikol J, Luccantoni-Freire S, Culeux A, Deslys JP, Comoy EE (2015) Evaluation of the protection of primates transfused with variant Creutzfeldt-Jakob disease-infected blood products filtered with prion removal devices: a 5-year update. Transfusion 55(6):1231–1241CrossRefPubMedGoogle Scholar
  60. 60.
    Herzog C, Riviere J, Lescoutra-Etchegaray N, Charbonnier A, Leblanc V, Sales N, Deslys JP, Lasmezas CI (2005) PrPTSE distribution in a primate model of variant, sporadic, and iatrogenic Creutzfeldt-Jakob disease. J Virol 79(22):14339–14345CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • David M. Asher
    • 1
    Email author
  • Pedro Piccardo
    • 1
  • Luisa Gregori
    • 1
  1. 1.Laboratory of Bacterial and Transmissible Spongiform Encephalopathy Agents, Division of Emerging and Transfusion-Transmitted DiseasesOffice of Blood Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug AdministrationSilver SpringUSA

Personalised recommendations