Advertisement

Prion Diseases pp 253-267 | Cite as

The Use of Transgenic and Knockout Mice in Prion Research

  • Abigail B. DiackEmail author
  • Jean C. Manson
Protocol
  • 365 Downloads
Part of the Neuromethods book series (NM, volume 129)

Abstract

Despite several decades since the identification of the prion protein (PrP), we still do not know the full extent of its normal function or its role in transmissible spongiform encephalopathies (TSEs) or prion diseases. The production of transgenic mice both devoid of PrP and expressing different forms of PrP have enabled us to study the role of PrP in health and disease. Transgenic models expressing different forms of PrP allow us to define the role of PrP disease susceptibility, model disease transmission both within and between species, and understand the impact of PrP mutations on the species barrier. Knockout or PrP null mice have been utilized in discovering the normal functions of PrP and have led to the development of large animal models devoid of PrP. This chapter will outline the role that transgenic mice play in the study of prion diseases and the insights they have provided into the normal function of PrP and its role in prion disease susceptibility.

Key words

Transmissible spongiform encephalopathy (TSE) Prion disease Transgenic mouse Knockout mouse Prnp Disease transmission 

References

  1. 1.
    Capecchi MR (2005) Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nat Rev Genet 6(6):507–512PubMedCrossRefGoogle Scholar
  2. 2.
    Folger KR, Wong EA, Wahl G et al (1982) Patterns of integration of DNA microinjected into cultured mammalian cells: evidence for homologous recombination between injected plasmid DNA molecules. Mol Cell Biol 2(11):1372–1387PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Mansour SL, Thomas KR, Capecchi MR (1988) Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336(6197):348–352PubMedCrossRefGoogle Scholar
  4. 4.
    Melton D (2002) Gene-targeting strategies. In: Clarke A (ed) Transgenesis techniques, Methods in molecular biology, vol 180 Springer New York, pp 151–173. doi: 10.1385/1-59259-178-7
  5. 5.
    Sauer B (1998) Inducible gene targeting in mice using the Cre/lox system. Methods 14(4):381–392PubMedCrossRefGoogle Scholar
  6. 6.
    Meyer M, de Angelis MH, Wurst W et al (2010) Gene targeting by homologous recombination in mouse zygotes mediated by zinc-finger nucleases. Proc Natl Acad Sci U S A 107(34):15022–15026PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Carbery ID, Ji D, Harrington A et al (2010) Targeted genome modification in mice using zinc-finger nucleases. Genetics 186(2):451–459PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Wang H, Y-C H, Markoulaki S et al (2013) TALEN-mediated editing of the mouse Y chromosome. Nat Biotechnol 31(6):530–532PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Sommer D, Peters A, Baumgart A-K et al (2015) TALEN-mediated genome engineering to generate targeted mice. Chromosom Res 23(1):43–55CrossRefGoogle Scholar
  10. 10.
    Yang H, Wang H, Jaenisch R (2014) Generating genetically modified mice using CRISPR/Cas-mediated genome engineering. Nat Protoc 9(8):1956–1968PubMedCrossRefGoogle Scholar
  11. 11.
    Singh P, Schimenti JC, Bolcun-Filas E (2015) A mouse geneticist’s practical guide to CRISPR applications. Genetics 199(1):1–15PubMedCrossRefGoogle Scholar
  12. 12.
    Scott M, Foster D, Mirenda C et al (1989) Transgenic mice expressing hamster prion protein produce species-specific scrapie infectivity and amyloid plaques. Cell 59(5):847–857PubMedCrossRefGoogle Scholar
  13. 13.
    Westaway D, Mirenda CA, Foster D et al (1991) Paradoxical shortening of scrapie incubation times by expression of prion protein transgenes derived from long incubation period mice. Neuron 7(1):59–68PubMedCrossRefGoogle Scholar
  14. 14.
    Manson JC, Clarke AR, Hooper ML et al (1994) 129/Ola mice carrying a null mutation in PrP that abolishes mRNA production are developmentally normal. Mol Neurobiol 8(2–3):121–127PubMedCrossRefGoogle Scholar
  15. 15.
    Bueler H, Aguzzi A, Sailer A et al (1993) Mice devoid of PrP are resistant to scrapie. Cell 73(7):1339–1347PubMedCrossRefGoogle Scholar
  16. 16.
    Mallucci G, Dickinson A, Linehan J et al (2003) Depleting neuronal PrP in prion infection prevents disease and reverses spongiosis. Science (New York, NY) 302(5646):871–874CrossRefGoogle Scholar
  17. 17.
    Bueler H, Fischer M, Lang Y et al (1992) Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature 356(6370):577–582PubMedCrossRefGoogle Scholar
  18. 18.
    Sakaguchi S, Katamine S, Nishida N et al (1996) Loss of cerebellar Purkinje cells in aged mice homozygous for a disrupted PrP gene. Nature 380(6574):528–531PubMedCrossRefGoogle Scholar
  19. 19.
    Manson JC, Clarke AR, McBride PA et al (1994) PrP gene dosage determines the timing but not the final intensity or distribution of lesions in scrapie pathology. Neurodegeneration 3(4):331–340PubMedGoogle Scholar
  20. 20.
    Kimberlin RH, Cole S, Walker CA (1987) Temporary and permanent modifications to a single strain of mouse scrapie on transmission to rats and hamsters. J Gen Virol 68(7):1875–1881PubMedCrossRefGoogle Scholar
  21. 21.
    Kimberlin RH, Walker CA (1979) Pathogenesis of scrapie: agent multiplication in brain at the first and second passage of hamster scrapie in mice. J Gen Virol 42(1):107–117PubMedCrossRefGoogle Scholar
  22. 22.
    Bishop MT, Hart P, Aitchison L et al (2006) Predicting susceptibility and incubation time of human-to-human transmission of vCJD. Lancet Neurol 5(5):393–398PubMedCrossRefGoogle Scholar
  23. 23.
    Hill AF, Desbruslais M, Joiner S et al (1997) The same prion strain causes vCJD and BSE. Nature 389(6650):448–450, 526PubMedCrossRefGoogle Scholar
  24. 24.
    Beringue V, Le Dur A, Tixador P et al (2008) Prominent and persistent extraneural infection in human PrP transgenic mice infected with variant CJD. PLoS One 3(1):e1419PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Padilla D, Beringue V, Espinosa JC et al (2011) Sheep and goat BSE propagate more efficiently than cattle BSE in human PrP transgenic mice. PLoS Pathog 7(3):e1001319PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Kobayashi A, Teruya K, Matsuura Y et al (2015) The influence of PRNP polymorphisms on human prion disease susceptibility: an update. Acta Neuropathol 130(2):159–170PubMedCrossRefGoogle Scholar
  27. 27.
    Bruce M, Chree A, McConnell I et al (1994) Transmission of bovine spongiform encephalopathy and scrapie to mice: strain variation and the species barrier. Philos Trans R Soc Lond Ser B Biol Sci 343(1306):405–411CrossRefGoogle Scholar
  28. 28.
    Plinston C, Hart P, Chong A et al (2011) Increased susceptibility of human-PrP transgenic mice to bovine spongiform encephalopathy infection following passage in sheep. J Virol 85(3):1174–1181PubMedCrossRefGoogle Scholar
  29. 29.
    Wilson R, Plinston C, Hunter N et al (2012) Chronic wasting disease and atypical forms of bovine spongiform encephalopathy and scrapie are not transmissible to mice expressing wild-type levels of human prion protein. J Gen Virol 93(Pt 7):1624–1629PubMedCrossRefGoogle Scholar
  30. 30.
    Kong Q, Huang S, Zou W et al (2005) Chronic wasting disease of elk: transmissibility to humans examined by transgenic mouse models. J Neurosci 25(35):7944–7949PubMedCrossRefGoogle Scholar
  31. 31.
    Sandberg MK, Al-Doujaily H, Sigurdson CJ et al (2010) Chronic wasting disease prions are not transmissible to transgenic mice overexpressing human prion protein. J Gen Virol 91(Pt 10):2651–2657PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Barria MA, Balachandran A, Morita M et al (2014) Molecular barriers to zoonotic transmission of prions. Emerg Infect Dis 20(1):88–97PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Bishop MT, Will RG, Manson JC (2010) Defining sporadic Creutzfeldt-Jakob disease strains and their transmission properties. Proc Natl Acad Sci U S A 107(26):12005–12010PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Hilton DA, Ghani AC, Conyers L et al (2004) Prevalence of lymphoreticular prion protein accumulation in UK tissue samples. J Pathol 203(3):733–739PubMedCrossRefGoogle Scholar
  35. 35.
    Gill ON, Spencer Y, Richard-Loendt A et al (2013) Prevalent abnormal prion protein in human appendixes after bovine spongiform encephalopathy epizootic: large scale survey. BMJ 347:f5675PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Bishop MT, Diack AB, Ritchie DL et al (2013) Prion infectivity in the spleen of a PRNP heterozygous individual with subclinical variant Creutzfeldt-Jakob disease. Brain 136(Pt 4):1139–1145PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Head MW, Knight R, Zeidler M et al (2009) A case of protease sensitive prionopathy in a patient in the UK. Neuropathol Appl Neurobiol 35(6):628–632PubMedCrossRefGoogle Scholar
  38. 38.
    Jansen C, Head MW, van Gool WA et al (2010) The first case of protease-sensitive prionopathy (PSPr) in The Netherlands: a patient with an unusual GSS-like clinical phenotype. J Neurol Neurosurg Psychiatry 81(9):1052–1055PubMedCrossRefGoogle Scholar
  39. 39.
    Zou WQ, Puoti G, Xiao X et al (2010) Variably protease-sensitive prionopathy: a new sporadic disease of the prion protein. Ann Neurol 68(2):162–172PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Diack AB, Ritchie DL, Peden AH et al (2014) Variably protease-sensitive prionopathy, a unique prion variant with inefficient transmission properties. Emerg Infect Dis 20(12):1969–1979PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Notari S, Xiao X, Espinosa JC et al (2014) Transmission characteristics of variably protease-sensitive prionopathy. Emerg Infect Dis 20(12):2006–2014PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Manson JC, Jamieson E, Baybutt H et al (1999) A single amino acid alteration (101L) introduced into murine PrP dramatically alters incubation time of transmissible spongiform encephalopathy. EMBO J 18(23):6855–6864PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Manson JC, Barron R, Jamieson E et al (2000) A single amino acid alteration in murine PrP dramatically alters TSE incubation time. Arch Virol (16):95–102Google Scholar
  44. 44.
    Barron RM, Thomson V, Jamieson E et al (2001) Changing a single amino acid in the N-terminus of murine PrP alters TSE incubation time across three species barriers. EMBO J 20(18):5070–5078PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Barron RM, Thomson V, King D et al (2003) Transmission of murine scrapie to P101L transgenic mice. J Gen Virol 84(Pt 11):3165–3172PubMedCrossRefGoogle Scholar
  46. 46.
    Priola SA, Lawson VA (2001) Glycosylation influences cross-species formation of protease-resistant prion protein. EMBO J 20(23):6692–6699PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Neuendorf E, Weber A, Saalmueller A et al (2004) Glycosylation deficiency at either one of the two glycan attachment sites of cellular prion protein preserves susceptibility to bovine spongiform encephalopathy and scrapie infections. J Biol Chem 279(51):53306–53316PubMedCrossRefGoogle Scholar
  48. 48.
    DeArmond SJ, Sanchez H, Yehiely F et al (1997) Selective neuronal targeting in prion disease. Neuron 19(6):1337–1348PubMedCrossRefGoogle Scholar
  49. 49.
    Cancellotti E, Wiseman F, Tuzi NL et al (2005) Altered glycosylated PrP proteins can have different neuronal trafficking in brain but do not acquire scrapie-like properties. J Biol Chem 280(52):42909–42918PubMedCrossRefGoogle Scholar
  50. 50.
    Tuzi NL, Cancellotti E, Baybutt H et al (2008) Host PrP glycosylation: a major factor determining the outcome of prion infection. PLoS Biol 6(4):e100PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Wiseman FK, Cancellotti E, Piccardo P et al (2015) The glycosylation status of PrPC is a key factor in determining transmissible spongiform encephalopathy transmission between species. J Virol 89(9):4738–4747PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Cancellotti E, Bradford BM, Tuzi NL et al (2010) Glycosylation of PrPC determines timing of neuroinvasion and targeting in the brain following transmissible spongiform encephalopathy infection by a peripheral route. J Virol 84(7):3464–3475PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Parkin ET, Watt NT, Hussain I et al (2007) Cellular prion protein regulates beta-secretase cleavage of the Alzheimer’s amyloid precursor protein. Proc Natl Acad Sci U S A 104(26):11062–11067PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Lauren J, Gimbel DA, Nygaard HB et al (2009) Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature 457(7233):1128–1132PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Moore RC, Lee IY, Silverman GL et al (1999) Ataxia in prion protein (PrP)-deficient mice is associated with upregulation of the novel PrP-like protein doppel1. J Mol Biol 292(4):797–817PubMedCrossRefGoogle Scholar
  56. 56.
    Rossi D, Cozzio A, Flechsig E et al (2001) Onset of ataxia and Purkinje cell loss in PrP null mice inversely correlated with Dpl level in brain. EMBO J 20(4):694–702PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Yokoyama T, Kimura KM, Ushiki Y et al (2001) In vivo conversion of cellular prion protein to pathogenic isoforms, as monitored by conformation-specific antibodies. J Biol Chem 276(14):11265–11271PubMedCrossRefGoogle Scholar
  58. 58.
    Linden R, Martins VR, Prado MAM et al (2008) Physiology of the prion protein. Physiol Rev 88(2):673–728PubMedCrossRefGoogle Scholar
  59. 59.
    Tobler I, Gaus SE, Deboer T et al (1996) Altered circadian activity rhythms and sleep in mice devoid of prion protein. Nature 380(6575):639–642PubMedCrossRefGoogle Scholar
  60. 60.
    Criado JR, Sanchez-Alavez M, Conti B et al (2005) Mice devoid of prion protein have cognitive deficits that are rescued by reconstitution of PrP in neurons. Neurobiol Dis 19(1–2):255–265PubMedCrossRefGoogle Scholar
  61. 61.
    Bremer J, Baumann F, Tiberi C et al (2010) Axonal prion protein is required for peripheral myelin maintenance. Nat Neurosci 13(3):310–318PubMedCrossRefGoogle Scholar
  62. 62.
    Miele G, Jeffrey M, Turnbull D et al (2002) Ablation of cellular prion protein expression affects mitochondrial numbers and morphology. Biochem Biophys Res Commun 291(2):372–377PubMedCrossRefGoogle Scholar
  63. 63.
    Wong BS, Liu T, Li R et al (2001) Increased levels of oxidative stress markers detected in the brains of mice devoid of prion protein. J Neurochem 76(2):565–572PubMedCrossRefGoogle Scholar
  64. 64.
    Le Pichon CE, Valley MT, Polymenidou M et al (2009) Olfactory behavior and physiology are disrupted in prion protein knockout mice. Nat Neurosci 12(1):60–69PubMedCrossRefGoogle Scholar
  65. 65.
    Singh A, Kong Q, Luo X et al (2009) Prion protein (PrP) knock-out mice show altered iron metabolism: a functional role for PrP in iron uptake and transport. PLoS One 4(7):e6115PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Wadsworth JD, Joiner S, Linehan JM et al (2013) Atypical scrapie prions from sheep and lack of disease in transgenic mice overexpressing human prion protein. Emerg Infect Dis 19(11):1731–1739PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Beringue V, Herzog L, Reine F et al (2008) Transmission of atypical bovine prions to mice transgenic for human prion protein. Emerg Infect Dis 14(12):1898–1901PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Cassard H, Torres J-M, Lacroux C et al (2014) Evidence for zoonotic potential of ovine scrapie prions. Nat Commun 5:5821PubMedCrossRefGoogle Scholar
  69. 69.
    Asante EA, Linehan JM, Desbruslais M et al (2002) BSE prions propagate as either variant CJD-like or sporadic CJD-like prion strains in transgenic mice expressing human prion protein. EMBO J 21(23):6358–6366PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Brown DR, Nicholas RSJ, Canevari L (2002) Lack of prion protein expression results in a neuronal phenotype sensitive to stress. J Neurosci Res 67(2):211–224PubMedCrossRefGoogle Scholar
  71. 71.
    Weise J, Sandau R, Schwarting S et al (2006) Deletion of cellular prion protein results in reduced Akt activation, enhanced postischemic caspase-3 activation, and exacerbation of ischemic brain injury. Stroke 37(5):1296–1300PubMedCrossRefGoogle Scholar
  72. 72.
    Schmitz M, Greis C, Ottis P et al (2014) Loss of prion protein leads to age-dependent behavioral abnormalities and changes in cytoskeletal protein expression. Mol Neurobiol 50(3):923–936PubMedCrossRefGoogle Scholar
  73. 73.
    Gadotti VM, Bonfield SP, Zamponi GW (2012) Depressive-like behaviour of mice lacking cellular prion protein. Behav Brain Res 227(2):319–323PubMedCrossRefGoogle Scholar
  74. 74.
    Büdefeld T, Majer A, Jerin A et al (2014) Deletion of the prion gene Prnp affects offensive aggression in mice. Behav Brain Res 266:216–221PubMedCrossRefGoogle Scholar
  75. 75.
    Rangel A, Burgaya F, Gavin R et al (2007) Enhanced susceptibility of Prnp-deficient mice to kainate-induced seizures, neuronal apoptosis, and death: role of AMPA/kainate receptors. J Neurosci Res 85(12):2741–2755PubMedCrossRefGoogle Scholar
  76. 76.
    Walz R, Amaral OB, Rockenbach IC et al (1999) Increased sensitivity to seizures in mice lacking cellular prion protein. Epilepsia 40(12):1679–1682PubMedCrossRefGoogle Scholar
  77. 77.
    Collinge J, Whittington MA, Sidle KCL et al (1994) Prion protein is necessary for normal synaptic function. Nature 370(6487):295–297PubMedCrossRefGoogle Scholar
  78. 78.
    Manson JC, Hope J, Clarke AR et al (1995) PrP gene dosage and long term potentiation. Neurodegeneration 4(1):113–114PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.The Roslin Institute & R(D)SVSUniversity of EdinburghMidlothianUK

Personalised recommendations