Advertisement

Prion Diseases pp 229-252 | Cite as

Biomarkers in Cerebrospinal Fluid

  • Joanna Gawinecka
  • Matthias Schmitz
  • Inga ZerrEmail author
Protocol
  • 368 Downloads
Part of the Neuromethods book series (NM, volume 129)

Abstract

Cerebrospinal fluid (CSF) is the main component of the brain extracellular space and participates in the exchange of many biochemical products in the central nervous system (CNS). Consequently, CSF contains a dynamic and complex mixture of proteins, which reflects physiological or pathological state of CNS. Changes in CSF proteome have been described in various neurodegenerative disorders. These alterations are also discussed to reflect pathological changes in the brain and thus contribute to a better understanding of the pathophysiology of the underlying disorder.

Proteomics offer a new methodology for the analysis of pathological changes and mechanisms occurring in neurodegenerative processes and provide a possibility of novel biomarker discovery to supplement faster, earlier, and precise diagnosis. In general, following criteria have to be applied in order to qualify a protein or a gene as a potential biomarker: the selected parameters have to be sensitive (able to detect the abnormalities in early stage of disease), specific (allow the differential diagnosis), reproducible across different laboratories, with high positive predictive value (indicate the disease when test is positive) and allow the disease monitoring as well as a potential therapy response. In Creutzfeldt–Jakob disease, two major lines of approaches have been followed aiming to detect the pathological form of prion protein (PrPSc) in various peripheral tissues on one hand, but also looking for surrogate parameters as a consequence of the underlying neurodegenerative process. While the amounts of the abnormal disease-related PrPSc in CSF and blood in human TSEs seem to be extremely low, the development of PrPSc-based biomarker was hampered by technical problems and the detection limits. On the other hand, a variety of other proteins have been investigated in the CSF and recently a variety of potential biomarkers have been reported, which contribute to the clinical diagnosis. Already established biomarkers are 14-3-3, β-amyloid, tau-protein and phosphorylated tau isoforms, S100b, as well as neuron-specific enolase (NSE). Since some of these markers display certain limitations, the search continues. The review summarizes the current knowledge of the biomarker development in prion diseases and discusses perspectives for new approaches.

Key words

TSE CJD 14-3-3 Tau CSF Biomarker Proteomics RT QuIC 

References

  1. 1.
    Will RG, Matthews WB (1982) Evidence for case-to-case transmission of Creutzfeldt-Jakob disease. J Neurol Neurosurg Psychiatry 45(3):235–238PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Lang CJ, Heckmann JG, Neundorfer B (1998) Creutzfeldt-Jakob disease via dural and corneal transplants. J Neurol Sci 160(2):128–139PubMedCrossRefGoogle Scholar
  3. 3.
    Will RG, Ironside JW, Zeidler M, Cousens SN, Estibeiro K, Alperovitch A, Poser S, Pocchiari M, Hofman A, Smith PG (1996) A new variant of Creutzfeldt-Jakob disease in the UK. Lancet 347(9006):921–925PubMedCrossRefGoogle Scholar
  4. 4.
    WHO (1999) WHO manual for strengthening diagnosis and surveillance of Creutzfeldt-Jakob disease. World Health Organisation Communicable Disease Surveillance and ResponseGoogle Scholar
  5. 5.
    Meissner B, Kallenberg K, Sanchez-Juan P, Collie D, Summers DM, Almonti S, Collins SJ, Smith P, Cras P, Jansen GH, Brandel JP, Coulthart MB, Roberts H, Van Everbroeck B, Galanaud D, Mellina V, Will RG, Zerr I (2009) MRI lesion profiles in sporadic Creutzfeldt-Jakob disease. Neurology 72(23):1994–2001PubMedCrossRefGoogle Scholar
  6. 6.
    Kretzschmar HA, Ironside JW, DeArmond SJ, Tateishi J (1996) Diagnostic criteria for sporadic Creutzfeldt-Jakob disease. Arch Neurol 53(9):913–920PubMedCrossRefGoogle Scholar
  7. 7.
    Jacobi C, Arlt S, Reiber H, Westner I, Kretzschmar HA, Poser S, Zerr I (2005) Immunoglobulins and virus-specific antibodies in patients with Creutzfeldt-Jakob disease. Acta Neurol Scand 111(3):185–190PubMedCrossRefGoogle Scholar
  8. 8.
    Green A, Sanchez-Juan P, Ladogana A, Cuadrado-Corrales N, Sánchez-Valle R, Mitrová E, Stoeck K, Sklaviadis T, Kulczycki J, Heinemann U, Hess K, Slivarichová D, Saiz A, Calero M, Mellina V, Knight R, van Duijn CM, Zerr I (2007) CSF analysis in patients with sporadic CJD and other transmissible spongiform encephalopathies. Eur J Neurol 14(2):121–124PubMedCrossRefGoogle Scholar
  9. 9.
    Harrington MG, Merril CR, Asher DM, Gajdusek DC (1986) Abnormal proteins in the cerebrospinal fluid of patients with Creutzfeldt-Jakob disease. N Engl J Med 315(5):279–283PubMedCrossRefGoogle Scholar
  10. 10.
    Hsich G, Kenney K, Gibbs CJ Jr, Lee KH, Harrington MG (1996) The 14-3-3 brain protein in cerebrospinal fluid as a marker for transmissible spongifrom encephalopathies. N Engl J Med 335(13):924–930PubMedCrossRefGoogle Scholar
  11. 11.
    Moore BWPV (1967) Specific acidic proteins of the nervous system. In: Carslon FD (ed) Physiological and biochemical aspects of nervous system integration. Prentice-Hall, Englewood Cliffs, NJ, pp 343–359Google Scholar
  12. 12.
    Boston PF, Jackson P, Thompson RJ (1982) Human 14-3-3 protein: radioimmunoassay, tissue distribution, and cerebrospinal fluid levels in patients with neurological disorders. J Neurochem 38:1475–1482PubMedCrossRefGoogle Scholar
  13. 13.
    Ichimura T, Isobe T, Okuyama T, Takahashi N, Araki K, Kuwano R, Takahashi Y (1988) Molecular cloning of cDNA coding for brain-specific 14-3-3 protein, a protein kinase-dependent activator of tyrosine and tryptophan hydroxylases. PNAS 85:7084–7088PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Wiltfang J, Otto M, Baxter HC, Bodemer M, Steinacker P, Bahn E, Zerr I, Kornhuber J, Kretzschmar HA, Poser S et al (1999) Isoform pattern of 14-3-3 proteins in the cerebrospinal fluid of patients with Creutzfeldt-Jakob disease. J Neurochem 73(6):2485–2490PubMedCrossRefGoogle Scholar
  15. 15.
    Shiga Y, Wakabayashi H, Miyazawa K, Kido H, Itoyama Y (2006) 14-3-3 protein levels and isoform patterns in the cerebrospinal fluid of Creutzfeldt-Jakob disease patients in the progressive and terminal stages. J Clin Neurosci 13(6):661–665PubMedCrossRefGoogle Scholar
  16. 16.
    Ries L, Melbert D, Krapcho M, Mariotto A, Miller BA, Feuer EJ, Clegg L, Horner MJ, Howlader N, Eisner MP, Reichman M, Edwards BK (eds) (2007) SEER Cancer Statistics Review, 1975–2004. National Cancer Institute, http://seer.cancer.gov/csr/1975_2004/, based on November 2006 SEER data submission, posted to the SEER web site: SEER Cancer Statistics Review, 1975–2004
  17. 17.
    Aitken A, Collinge DB, Van Heusden BP, Isobe T, Roseboom PH, Rosenfeld G, Soll J (1992) 14-3-3 proteins: a highly conserved, widespread family of eukaryotic proteins. Trends Biochem Sci 17:498–501PubMedCrossRefGoogle Scholar
  18. 18.
    Beimling P, Niehof M, Radziwill G, Moelling K (1994) The aminoterminus of c-Raf-1 binds a protein kinase phosphorylating Ser259. Biochem Biophys Res Commun 204(2):841–848PubMedCrossRefGoogle Scholar
  19. 19.
    Muslin AJ, Tanner J, Allen PM, Shaw AS (1996) Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell 84(6):889–897PubMedCrossRefGoogle Scholar
  20. 20.
    Conklin DS, Galaktionov K, Beach D (1995) 14-3-3 proteins associate with cdc25 phosphatases. PNAS 92(17):7892–7896PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Zha J, Harada H, Yang E, Jockel J, Korsmeyer SJ (1996) Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L). Cell 87:619–628PubMedCrossRefGoogle Scholar
  22. 22.
    Ichimura T, Uchiyama J, Kunihiro O, Ito M, Horigome T, Omata S, Shinkai F, Kaji H, Isobe T (1995) Identification of the site of interaction of the 14-3-3 protein with phosphorylated tryptophan hydroxylase. J Biol Chem 270(48):28515–28518PubMedCrossRefGoogle Scholar
  23. 23.
    Richard M, Biacabe AG, Streichenberger N, Ironside JW, Mohr M, Kopp N, Perret-Liaudet A (2003) Immunohistochemical localization of 14.3.3 zeta protein in amyloid plaques in human spongiform encephalopathies. Acta Neuropathol (Berl) 105(3):296–302Google Scholar
  24. 24.
    Kawamoto Y, Akiguchi I, Jarius C, Budka H (2004) Enhanced expression of 14-3-3 proteins in reactive astrocytes in Creutzfeldt-Jakob disease brains. Acta Neuropathol (Berl) 108:302–308CrossRefGoogle Scholar
  25. 25.
    WHO (1998) Human transmissible spongiform encephalopathies. Wkly Epidemiol Rec 47:361–365Google Scholar
  26. 26.
    Collins SJ, Sanchez-Juan P, Masters CL, Klug GM, van Duijn C, Poleggi A, Pocchiari M, Almonti S, Cuadrado-Corrales N, de Pedro-Cuesta J et al (2006) Determinants of diagnostic investigation results across the clinical spectrum of sporadic CJD. Brain 129:2278–2287PubMedCrossRefGoogle Scholar
  27. 27.
    Castellani RJ, Colucci M, Xie Z, Zou W, Li C, Parchi P, Capellari S, Pastore M, Rahbar MH, Chen SG et al (2004) Sensitivity of 14-3-3 protein test varies in subtypes of sporadic Creutzfeldt-Jakob disease. Neurology 63:436–442PubMedCrossRefGoogle Scholar
  28. 28.
    Brandel JP, Peoc’h K, Beaudry P, Welaratne A, Bottos C, Agid Y, Laplanche JL (2001) 14-3-3 protein cerebrospinal fluid detection in human growth hormone-treated Creutzfeldt-Jakob disease patients. Ann Neurol 49(2):257–260PubMedCrossRefGoogle Scholar
  29. 29.
    Zerr I, Bodemer M, Gefeller O, Otto M, Poser S, Wiltfang J, Windl O, Kretzschmar HA, Weber T (1998) Detection of 14-3-3 protein in the cerebrospinal fluid supports the diagnosis of Creutzfeldt-Jakob disease. Ann Neurol 43(1):32–40PubMedCrossRefGoogle Scholar
  30. 30.
    Lemstra AW, van Meegen MT, Vreyling JP, Meijerink PH, Jansen GH, Bulk S, Baas F, van Gool WA (2000) 14-3-3 testing in diagnosing Creutzfeldt-Jakob disease: a prospective study in 112 patients. Neurology 55(4):514–516PubMedCrossRefGoogle Scholar
  31. 31.
    Zerr I, Pocchiari M, Collins S, Brandel JP, de Pedro CJ, Knight RSG, Bernheimer H, Cardone F, Delasnerie-Lauprêtre N, Cuadrado Corrales N et al (2000) Analysis of EEG and CSF 14-3-3 proteins as aids to the diagnosis of Creutzfeldt-Jakob disease. Neurology 55:811–815PubMedCrossRefGoogle Scholar
  32. 32.
    Zerr I, Bodemer M, Westermann R, Schröter A, Jacobi C, Arlt S, Otto M, Poser S (2000) 14-3-3 proteins in neurological disorders. J Neurol 247(Suppl 3):III/14Google Scholar
  33. 33.
    Green AJ, Thompson EJ, Stewart GE, Zeidler M, McKenzie JM, MacLeod M-A, Ironside JW, Will RG, Knight RS (2001) Use of 14-3-3 and other brain-specific proteins in CSF in the diagnosis of variant Creutzfeldt-Jakob disease. J Neurol Neurosurg Psychiatry 70:744–748PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Aksamit AJ Jr, Preissner CM, Homburger HA (2001) Quantitation of 14-3-3 and neuron-specific enolase proteins in CSF in Creutzfeldt-Jakob disease. Neurology 57(4):728–730PubMedCrossRefGoogle Scholar
  35. 35.
    Sanchez-Valle R, Saiz A, Graus F (2002) 14-3-3 protein isoforms and atypical patterns of the 14-3-3 assay in the diagnosis of Creutzfeldt-Jakob disease. Neurosci Lett 320:69–72PubMedCrossRefGoogle Scholar
  36. 36.
    Pennington C, Chohan G, Mackenzie J, Andrews M, Will R, Knight R, Green A (2009) The role of cerebrospinal fluid proteins as early diagnostic markers for sporadic Creutzfeldt-Jakob disease. Neurosci Lett 455(1):56–59PubMedCrossRefGoogle Scholar
  37. 37.
    Kenney K, Brechtel C, Takahashi H, Kurohara K, Anderson P, Gibbs CJ Jr (2000) An enzyme-linked immunosorbent assay to quantify 14-3-3 proteins in the cerebrospinal fluid of suspected Creutzfeldt-Jakob disease patients. Ann Neurol 48(3):395–398PubMedCrossRefGoogle Scholar
  38. 38.
    Gmitterová K, Heinemann U, Bodemer M, Krasnianski A, Meissner B, Kretzschmar HA, Zerr I (2009) 14-3-3 CSF levels in sporadic Creutzfeldt-Jakob disease differ across molecular subtypes. Neurobiol Aging 30(11):1842–1850PubMedCrossRefGoogle Scholar
  39. 39.
    Sanchez-Juan P, Sanchez-Valle R, Green A, Ladogana A, Cuadrado-Corrales N, Mitrová E, Stoeck K, Sklaviadis T, Kulczycki J, Hess K, Krasnianski A, Equestre M, Slivarichová D, Saiz A, Calero M, Pocchiari M, Knight R, van Duijn CM, Zerr I (2007) Influence of timing on CSF tests value for Creutzfeldt-Jakob disease diagnosis. J Neurol 254(7):901–906PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Sanchez-Juan P, Green A, Ladogana A, Cuadrado-Corrales N, Sanchez-Valle R, Mitrova E, Stoeck K, Sklaviadis T, Kulczycki J, Hess K et al (2006) Cerebrospinal fluid tests in the differential diagnosis of CJD. Neurology 67(4):637–643PubMedCrossRefGoogle Scholar
  41. 41.
    Van Everbroeck B, Quoilin S, Boons J, Martin JJ, Cras P (2003) A prospective study of CSF markers in 250 patients with possible Creutzfeldt-Jakob disease. J Neurol Neurosurg Psychiatry 74:1210–1214PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Jimi T, Wakayama Y, Shibuya S, Nakata H, Tomaru T, Takahashi Y, Kosaka K, Asano T, Kato K (1992) High levels of nervous system-specific proteins in cerebrospinal fluid in patients with early stage Creutzfeldt-Jakob disease. Clin Chim Acta 211(1–2):37–46PubMedCrossRefGoogle Scholar
  43. 43.
    Giraud P, Biacabe AG, Chazot G, Later R, Joyeuy O, Moene Y, Perret-Liaudet A (2002) Increased detection of 14-3-3 protein in cerebrospinal fluid in sporadic Creutzfeldt-Jakob disease during the disease course. Eur Neurol 48:218–221PubMedCrossRefGoogle Scholar
  44. 44.
    Mollenhauer B, Serafin S, Zerr I, Steinhoff BJ, Otto M, Scherer M, Schul-Schaeffer W, Poser S (2003) Diagnostic problems during late course in Creutzfeldt-Jakob disease. J Neurol 250:629–630PubMedCrossRefGoogle Scholar
  45. 45.
    Goedert M, Spillantin MG, Potier MC, Ulrich J, Crowther RA (1989) Cloning and sequencing of the cDNA encoding an isoform of microtubule-associated protein tau containing four tandem repeats: differential expression of tau protein mRNAs in human brain. EMBO J 8(2):393–399PubMedPubMedCentralGoogle Scholar
  46. 46.
    Lindwall G, Colle JG (1984) Phosphorylation affects the ability of tau protein to promote microtubule assembly. J Biol Chem 259(8):5301–5305PubMedGoogle Scholar
  47. 47.
    Köpke E, Tung Y, Shaikh S, Alonso A, Iqbal K, Grundke-Iqbal I (1993) Microtubule-associated protein tau: abnormal phosphorylation of a non-paired helical filament pool in Alzheimer’s disease. J Biol Chem 268:24374–24384PubMedGoogle Scholar
  48. 48.
    Alonso A, Zaidi T, Novak M, Grundke-Iqbal I, Iqbal K (2001) Hyperphosphorylation induces self-assembly of tau into tangles of paired helical filaments/straight filaments. PNAS 98(12):6923–6928PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Andreasen N, Minthon L, Clarberg A, Davidson P, Gottfries J, Vanmechelen E, Vanderstichele H, Winblad B, Blennow K (1999) Sensitivity, specificity and stability of CSF-tau in AD in a community-based patient sample. Neurology 7:1488–1494CrossRefGoogle Scholar
  50. 50.
    Galasko D, Clark C, Chang L, Miller B, Green RC, Motter R, Seubert P (1997) Assessment of CSF levels of tau protein in mildly demented patients with Alzheimer’s disease. Neurology 48(3):632–635PubMedCrossRefGoogle Scholar
  51. 51.
    Arai H, Morikawa Y, Higuchi M, Matsui T, Clark CM, Miura M, Machida N, Lee VM, Trojanowski JQ, Sasaki H (1997) Cerebrospinal fluid tau levels in neurodegenerative diseases with distinct tau-related pathology. Biochem Biophys Res Commun 236:262–264PubMedCrossRefGoogle Scholar
  52. 52.
    Mecocci P, Cherubini A, Bregnocchi M, Chionne F, Cecchetti R, Lowenthal DT, Senin U (1998) Tau protein in cerebrospinal fluid: a new diagnostic and prognostic marker in Alzheimer disease? Alzheimer Dis Assoc Disord 12:211–214PubMedCrossRefGoogle Scholar
  53. 53.
    Ishiguro KOH, Arai H, Yamaguchi H, Urakami K, Park JM, Sato K, Kohno H, Imahori K (1999) Phosphorylated tau in human cerebrospinal fluid is a diagnostic marker for Alzheimer’s disease. Neurosci Lett 270(3):91–94PubMedCrossRefGoogle Scholar
  54. 54.
    Itoh N, Arai K, Urakami K, Ishiguro K, Ohno H, Kohno H, Hampel H, Bürger K, Wiltfang J, Otto M et al (2000) Clinical utility of quantification of CSF phosphorylated tau in the antemortem diagnosis of Alzheimer’s disease. Ann Neurol 50:1506Google Scholar
  55. 55.
    Kapaki E, Kilidireas K, Paraskevas GP, Michalopoulou M, Patsouris E (2001) Highly increased CSF tau protein and decreased beta-amyloid (1-42) in sporadic CJD: a discrimination from Alzheimer's disease? J Neurol Neurosurg Psychiatry 71(3):401–403PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Otto M, Wiltfang J, Cepek L, Neumann M, Mollenhauer B, Steinacker P, Ciesielczyk B, Schulz-Schaeffer W, Kretzschmar HA, Poser S (2002) Tau protein and 14-3-3 protein in the differential diagnosis of Creutzfeldt-Jakob disease. Neurology 58:192–197PubMedCrossRefGoogle Scholar
  57. 57.
    Satoh K, Shirabe S, Tsujino A, Eguchi H, Motomura M, Honda H, Tomita I, Satoh A, Tsujihata M, Matsuo H, Nakagawa M, Eguchi K (2007) Total tau protein in cerebrospinal fluid and diffusion-weighted MRI as an early diagnostic marker for Creutzfeldt-Jakob disease. Dement Geriatr Cogn Disord 24(3):207–212PubMedCrossRefGoogle Scholar
  58. 58.
    Buerger K, Otto M, Teipel SJ, Zinkowski R, Blennow K, DeBernardis J, Kerkman D, Schroder J, Schonknecht P, Cepek L et al (2006) Dissociation between CSF total tau and tau protein phosphorylated at threonine 231 in Creutzfedt-Jakob disease. Neurobiol Aging 27(1):10–15PubMedCrossRefGoogle Scholar
  59. 59.
    Otto M, Wiltfang J, Tumani H, Zerr I, Lantsch M, Kornhuber J, Weber T, Kretzschmar HA, Poser S (1997) Elevated levels of tau-protein in cerebrospinal fluid of patients with Creutzfeldt-Jakob disease. Neurosci Lett 225(3):210–212PubMedCrossRefGoogle Scholar
  60. 60.
    Galasko DCL, Mottet R, Clark CM, Kaye J, Knopman D, Thomas R, Kholodenko D, Schenk D, Lieberburg I, Miller B, Green R, Basherad R, Kertiles L, Boss MA, Seubert P (1998) High cerebrospinal fluid tau and low amyloid beta42 levels in the clinical diagnosis of Alzheimer disease and relation to apolipoprotein E genotype. Arch Neurol 55(7):937–945PubMedCrossRefGoogle Scholar
  61. 61.
    Ladogana A, Sanchez-Juan P, Mitrová E, Green A, Cuadrado-Corrales N, Sánchez-Valle R, Koscova S, Aguzzi A, Sklaviadis T, Kulczycki J, Gawinecka J, Saiz A, Calero M, van Duijn CM, Pocchiari M, Knight R, Zerr I (2009) Cerebrospinal fluid biomarkers in human genetic transmissible spongiform encephalopathies. J Neurol 256(10):1620–1628PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Goodall CA, Head MW, Everington D, Ironside JW, Knight RS, Green AJ (2006) Raised CSF phospho-tau concentrations in variant Creutzfeldt-Jakob disease: diagnostic and pathological implications. J Neurol Neurosurg Psychiatry 77:89–91PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Riemenschneider M, Wagenpfeil S, Vanderstichele H, Otto M, Wiltfang J, Kretzschmar H, Vanmechelen E, Förstl H, Kurz A (2003) Phospho-tau/total tau ration in cerebrospinal fluid discriminates Creutzfeldt-Jakob disease from other dementias. Mol Psychiatry 8:343–347PubMedCrossRefGoogle Scholar
  64. 64.
    Selkoe DJ (1994) Normal and abnormal biology of the beta amyloid precursor protein. Annu Rev Neurosci 17:489–517PubMedCrossRefGoogle Scholar
  65. 65.
    Shoji M, Golde TE, Ghiso J, Cheung TT, Estus S, Schaffer LM, Cai XD, McKay DM, Tinter R, Frangione B (1992) Production of the Alzheimer amyloid beta protein by normal proteolytic processing. Science 258(2079):126–129PubMedCrossRefGoogle Scholar
  66. 66.
    Seubert P, Vigo-Pelfrey C, Esch F, Lee M, Dovey H, Davic D, Sinha S, Schlossmacher M, Whaley J, Swindlehurst C et al (1992) Isolation and quantification of soluble Alzheimer’s beta-peptide from biological fluids. Nature 359(6393):325–327PubMedCrossRefGoogle Scholar
  67. 67.
    Mattson MP (1999) Impairment of membrane transport and signal transduction systems by amyloidogenic proteins. Methods Enzymol 309:733–746PubMedCrossRefGoogle Scholar
  68. 68.
    Lauderback CM, Hackett JM, Huang FF, Keller JN, Szweda LI, Markesbery WR, Butterfield AD (2001) The glial glutamate transporter, GLT-1, is oxidatively modified by 4-hydroxy-2-nonenal in the Alzheimer’s disease brain: the role of Abeta1-42. J Neurochem 78:413–416PubMedCrossRefGoogle Scholar
  69. 69.
    Varadajaran S, Yatin S, Aksenova M, Butterfield DA (2000) Review: Alzheimer’s amyloid beta-peptide-associated free radical oxidative stress and neurotoxicity. J Struct Biol 130(2–3):184–208CrossRefGoogle Scholar
  70. 70.
    Yatin S, Varadajaran S, Link CD (1999) In vitro and in vivo oxidative stress associated with Alzheimer’s amyloid beta-peptide (1-42). Neurobiol Aging 20(3):325–330PubMedCrossRefGoogle Scholar
  71. 71.
    Dickson DW (1997) The pathogenesis of senile plaques. J Neuopathol Exp Neurol 56(4):321–339CrossRefGoogle Scholar
  72. 72.
    Shoji M, Matsubara E, Kanai M, Watanabe M, Nakamura T, Tomidokoro Y, Shizuka M, Wakabayashi K, Igeta Y, Ikeda Y, Mizushima K, Amari M, Ishiguro K, Kawarabayashi T, Harigaya Y, Okamoto K, Hirai S (1998) Combination assay of CSF tau, a beta 1-40 and a beta 1-42(43) as a biochemical marker of Alzheimer's disease. J Neurol Sci 158(2):134–140PubMedCrossRefGoogle Scholar
  73. 73.
    Andreasen N, Hesse C, Davidsson P, Minthon L, Wallin A, Winblad B, Vanderstichele H, Vanmechelen E, Blennow K (1999) Cerebrospinal fluid beta-amyloid(1-42) in Alzheimer disease: differences between early- and late-onset Alzheimer disease and stability during the course of disease. Arch Neurol 56(6):673–680PubMedCrossRefGoogle Scholar
  74. 74.
    Tamaoka A, Sawamur N, Fukushima T, Shoji S, Matsubara E, Shoji M, Hirai S, Furiya Y, Endoh R, Mori H (1997) Amyloid beta protein 42(43) in cerebrospinal fluid of patients with Alzheimer’s disease. J Neurol Sci 148(1):41–45PubMedCrossRefGoogle Scholar
  75. 75.
    Otto M, Esselmann H, Schulz-Schaeffer W, Neumann M, Schröter A, Ratzka P, Cepek L, Zerr I, Steinacker P, Windl O et al (2000) Decreased beta-amyloid1-42 in cerebrospinal fluid of patients with Creutzfeldt-Jakob disease. Neurology 54(5):1099–1102PubMedCrossRefGoogle Scholar
  76. 76.
    Van Everbroeck B, Green A, Pals P, Martin JJ, Cras P (1999) Decreased levels of amyloid-beta 1-42 in cerebrospinal fluid of Creutzfeldt-Jakob disease patients. J Alzheimers Dis 1:419–424PubMedCrossRefGoogle Scholar
  77. 77.
    Wiltfang J, Esselmann H, Smirnov A, Bibl M, Cepek L, Steinacker P, Mollenhauer B, Buerger K, Hampel H, Paul S et al (2003) Beta-amyloid peptides in cerebrospinal fluid of patients with Creutzfeldt-Jakob disease. Ann Neurol 54:263–267PubMedCrossRefGoogle Scholar
  78. 78.
    Gloeckner SF, Meyne F, Wagner F, Heinemann U, Krasnianski A, Meissner B, Zerr I (2008) Quantitative analysis of transthyretin, tau and amyloid-beta in patients with dementia. J Alzheimers Dis 14:17–25PubMedCrossRefGoogle Scholar
  79. 79.
    Drohat AC, Baldisseri D, Rustandi RR, Weber DJ (1998) Solution structure of calcium-bound rat S100B (beta beta) as determined by nuclear magnetic resonance spectroscopy. Biochemistry 37:2729–2740PubMedCrossRefGoogle Scholar
  80. 80.
    Kilby PM, Van Eldik LJ, Roberts GC (1996) The solution structure of the bovine S100B protein dimer in the calcium-free state. Structure 4:1041–1052PubMedCrossRefGoogle Scholar
  81. 81.
    Donato R (1988) Calcium-independent, pH regulated effects of S-100 proteins on assembly-disassembly of brain microtubule protein in vitro. J Biol Chem 263:106–110PubMedGoogle Scholar
  82. 82.
    Bianchi R, Giambianco I, Donato R (1993) S-100 protein, but not calmodulin, binds to the gial fibrillary acidic protein and inhibits its polymerization in a Ca2+−dependent manner. J Biol Chem 268:12669–12674PubMedGoogle Scholar
  83. 83.
    Bhattacharyya A, Oppenheim R, Prevette D, Moore BW, Brackenbury R, Ratner N (1992) S100 is present in developing chicken neurons and Schwann cells and promotes motor neuron survival in vivo. J Neurobiol 23:451–466PubMedCrossRefGoogle Scholar
  84. 84.
    Barger SW, Van Eldik LJ, Mattson MP (1995) S100β protects hippocampal neurons from damage induces by glucose deprivation. Brain Res 677:167–170PubMedCrossRefGoogle Scholar
  85. 85.
    Huttunen HJ, Kuja-Panula J, Sorci G, Aggneletti AL, Donata R, Rauvala H (2000) Coregulation of neurite outgrowth and cell survival by amphoterin and S100 proteins through receptor for advanced glycation end products (RAGE) activation. J Biol Chem 275:40096–40105PubMedCrossRefGoogle Scholar
  86. 86.
    Fulle S, Pietrangelo T, Mariggio MA, Lorenzon P, Racanicchi L, Mozrzymas J, Guarnieri S, D’annunzio G (2000) Calcium and fos involvement in brain-derived Ca2+−binding protein (S100)-dependent apoptosis in rat phaeochromocytoma cells. Exp Physiol 85:243–253PubMedGoogle Scholar
  87. 87.
    Kaiser E, Kuzmits R, Pregant P, Burghuber O, Worofka W (1989) Clinical biochemistry of neuron specific enolase. Clin Chim Acta 183(1):13–31PubMedCrossRefGoogle Scholar
  88. 88.
    Marangos PJ, Schmechel DE (1987) Neuron specific enolase, a clinically useful marker for neurons and neuroendocrine cells. Annu Rev Neurosci 10:269–295PubMedCrossRefGoogle Scholar
  89. 89.
    Jauch EC, Lindsell C, Broderick J, Fagan SC, Tilley BC, Levine SR, NINDS rt-PA Stroke Study Group (2006) Association of serial biochemical markers with acute ischemic stroke: the National Institute of Neurological Disorders and Stroke recombinant tissue plasminogen activator stroke study. Stroke 37(10):2508–2513PubMedCrossRefGoogle Scholar
  90. 90.
    Zerr I, Bodemer M, Räcker S, Grosche S, Poser S, Kretzschmar HA, Weber T (1995) Cerebrospinal fluid concentration of neuron-specific enolase in diagnosis of Creutzfeldt-Jakob disease. Lancet 345:1609–1610PubMedCrossRefGoogle Scholar
  91. 91.
    van Duijn CM, Delasnerie-Lauprêtre N, Masullo C, Zerr I, de Silva R, Wientjens DPWM, Brandel JP, Weber T, Bonavita V, Zeidler M et al (1998) Case-control study of risk factors of Creutzfeldt-Jakob disease in Europe during 1993–95. European Union (EU) collaborative study Group of Creutzfeldt-Jakob disease (CJD). Lancet 351(9109):1081–1085PubMedCrossRefGoogle Scholar
  92. 92.
    Beaudry P, Cohen P, Brandel JP, Delasnerie-Laupretre N, Richard S, Launay JM, Laplanche JL (1999) 14-3-3 protein, neuron-specific enolase, and S-100 protein in cerebrospinal fluid of patients with Creutzfeldt-Jakob disease. Dement Geriatr Cogn Disord 10(1):40–46PubMedCrossRefGoogle Scholar
  93. 93.
    Kohira I, Tsuji T, Ishizu H, Takao Y, Wake A, Abe K, Kuroda S (2000) Elevation of neuron-specific enolase in serum and cerebrospinal fluid of early stage Creutzfeldt-Jakob disease. Acta Neurol Scand 102:385–387PubMedCrossRefGoogle Scholar
  94. 94.
    Otto M, Stein H, Szudra A, Zerr I, Bodemer M, Gefeller O, Poser S, Kretzschmar HA, Maeder M, Weber T (1997) S-100 protein concentration in the cerebrospinal fluid of patients with Creutzfeldt-Jakob disease. J Neurol 244(9):566–570PubMedCrossRefGoogle Scholar
  95. 95.
    Kropp S, Zerr I, Schulz-Schaeffer WJ, Riedemann C, Bodemer M, Laske C, Kretzschmar HA, Poser S (1999) Increase of neuron-specific enolase in patients with Creutzfeldt-Jakob disease. Neurosci Lett 261:124–126PubMedCrossRefGoogle Scholar
  96. 96.
    Jesse SSP, Cepek L, Arnim CV, Tumani H, Lehnert S, Kretzschmar HA, Baier M, Otto M (2009) Glial fibrillary acidic protein and protein S-100B: different concentration pattern of glial proteins in cerebrospinal fluid of patients with Alzheimer’s disease and Creutzfeldt-Jakob disease. J Alzheimers Dis 17(3):541–551PubMedCrossRefGoogle Scholar
  97. 97.
    Minghetti L, Cardone F, Greco A, Puopolo M, Levi G, Green AJ, Knight R, Pocchiari P (2002) Increased CSF levels of prostaglandin E(2) in variant Creutzfeldt-Jakob disease. Neurology 58:127–129PubMedCrossRefGoogle Scholar
  98. 98.
    Sanchez JC, Guillaume E, Lescuyer P, Allard L, Carrette O, Scherl A, Burgess J, Corthals GL, Burkhard PR, Hochstrasser DF (2004) Cystatin C as a potential cerebrospinal fluid marker for the diagnosis of Creutzfeldt-Jakob disease. Proteomics 4:2229–2233PubMedCrossRefGoogle Scholar
  99. 99.
    Schmidt H, Otto M, Niedmann P, Cepek L, Schroter A, Kretzschmar HA, Poser S (2004) CSF lactate dehydrogenase activity in patients with Creutzfeldt-Jakob disease exceeds that in other dementias. Dement Geriatr Cogn Disord 17:204–206PubMedCrossRefGoogle Scholar
  100. 100.
    Guillaume E, Zimmermann C, Burkhard PR, Hochstrasser DF, Sanchez JC (2003) A potenial cerebrospinal fluid and plasmatic marker for the diagnosis of Creutzfeldt-Jalob disease. Proteomics 3(8):1495–1499PubMedCrossRefGoogle Scholar
  101. 101.
    Stoeck K, Bodemer M, Ciesielczyk B, Meissner B, Bartl M, Heinemann U, Zerr I (2005) Interleukin 4 and interleukin 10 levels are elevated in the cerebrospinal fluid of patients with Creutzfeldt-Jakob disease. Arch Neurol 62(10):1591–1594PubMedCrossRefGoogle Scholar
  102. 102.
    Silveyra MXC-CN, Marcos A, Barguero MS, Rabano A, Calero M, Saez-Valero J (2006) Altered glycosylation of acetylcholinesterase in Creutzfeldt-Jakob disease. J Neurochem 96(1):97–104PubMedCrossRefGoogle Scholar
  103. 103.
    Schätzl HM, Da Costa M, Taylor L, Cohen FE, Prusiner SB (1995) Prion protein gene variation among primates. J Mol Biol 245(4):362–374PubMedCrossRefGoogle Scholar
  104. 104.
    Prusiner S (1991) Molecular biology of prion diseases. Science 252(5012):1515–1522PubMedCrossRefGoogle Scholar
  105. 105.
    Naslavsky N, Stein R, Yanai A, Friedlander G, Taraboulos A (1997) Characterization of detergent-insoluble complexes containing the cellular prion protein and its scrapie isoform. J Biol Chem 272(10):6324–6331PubMedCrossRefGoogle Scholar
  106. 106.
    Moser M, Colello R, Pott U, Oesch B (1995) Developmental expression of the prion protein gene in glial cells. Neuron 14(3):509–517PubMedCrossRefGoogle Scholar
  107. 107.
    Brandner S, Klein MA, Aguzzi A (1999) A crucial role for B cells in neuroinvasive scrapie. Transfus Clin Biol 6(1):17–23PubMedCrossRefGoogle Scholar
  108. 108.
    Holada K, Mondoro TH, Muller J, Vostal JG (1998) Increased expression of phosphatidylinositol-specific phospholipase C resistant prion proteins on the surface of activated platelets. Br J Haematol 103(1):276–282PubMedCrossRefGoogle Scholar
  109. 109.
    Pauly PC, Harris DA (1998) Copper stimulates endocytosis of the prion protein. J Biol Chem 273(50):33107–33110PubMedCrossRefGoogle Scholar
  110. 110.
    Shyng SL, Huber MT, Harris DA (1993) A prion protein cycles between the cell surface and an endocytic compartment in cultured neuroblastoma cells. J Biol Chem 268(21):15922–15928PubMedGoogle Scholar
  111. 111.
    Shyng SL, Lehmann S, Moulder KL, Lesko A, Harris DA (1995) The N-terminal domain of a glycolipid-anchored prion protein is essential for its endocytosis via clathrin-coated pits. J Biol Chem 270(24):14793–14800PubMedCrossRefGoogle Scholar
  112. 112.
    Kuwahara C, Takeuchi AM, Nishimura T, Haraguchi K, Kubosaki A, Matsumoto Y, Saeki K, Yokoyama T, Itohara S, Onodera T (1999) Prions prevent neuronal cell-line death. Nature 400(6741):225–226PubMedCrossRefGoogle Scholar
  113. 113.
    Bounhar Y, Zhang Y, Goodyer CG, LeBlanc AC (2001) Prion protein protects human neurons against Bax-mediated apoptosis. J Biol Chem 276:39145–39149PubMedCrossRefGoogle Scholar
  114. 114.
    Paitel E, Sunyach C, Alves da Costa C, Bourdon JC, Vincent B, Checler F (2004) Primary cultured neurons devoid of cellular prion display lower responsiveness to staurosporine through the control of p53 at both transcriptional and post-transcriptional levels. J Biol Chem 279(1):612–618PubMedCrossRefGoogle Scholar
  115. 115.
    Wong BS, Liu T, Li R, Pan T, Petersen RB, Smith MA, Gambetti P, Perry G, Manson JC, Brown DR et al (2001) Increased levels of oxidative stress markers detected in the brains of mice devoid of prion protein. J Neurochem 76(2):565–572PubMedCrossRefGoogle Scholar
  116. 116.
    Brown DR, Schuzl-Schaeffer WJ, Schmidt B, Kretzschmar H (1997) Prion protein-deficient cells show altered response to oxidative stress due to decreased SOD-1 activity. Exp Neurol 146(1):104–112PubMedCrossRefGoogle Scholar
  117. 117.
    Chiarini LB, Freitas AR, Zanata SM, Berntani RR, Martins VR, Linden R (2002) Cellular prion protein transduces neuroprotective signals. EMBO J 13:3317–3326CrossRefGoogle Scholar
  118. 118.
    Zanata SM, Lopes MH, Mercadante AF, Hajj GN, Chiarini LB, Nomizo R, Freitas AR, Cabral AL, Lee KS, Juliano MA et al (2002) Stress-inducible protein 1 is a cell surface ligand for cellular prion that triggers neuroprotection. EMBO J 13:3307–3316CrossRefGoogle Scholar
  119. 119.
    Kim BH, Choi JK, Kim JI, Choi EK, Carp RI, Kim YS (2004) The cellular prion protein (PrPC) prevents apoptotic neuronal cell death and mitochondrial dysfunction induced by serum deprivation. Mol Brain Res 124(1):40–50PubMedCrossRefGoogle Scholar
  120. 120.
    Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science 216:136–144PubMedCrossRefGoogle Scholar
  121. 121.
    Prusiner SB (1998) The prion diseases. Brain Pathol 8(3):499–513PubMedCrossRefGoogle Scholar
  122. 122.
    Wong BS, Green AJ, Li R, Xie Z, Pan T, Liu T, Chen SG, Gambetti P, Sy MS (2001) Absence of protease-resistant prion protein in the cerebrospinal fluid of Creutzfeldt-Jakob disease. J Pathol 194(1):9–14PubMedCrossRefGoogle Scholar
  123. 123.
    Bieschke J, Giese A, Schulz-Schaeffer W, Zerr I, Poser S, Eigen M, Kretzschmar H (2000) Ultrasensitive detection of pathological prion protein aggregates by dual-color scanning for intensely fluorescent targets. PNAS 97(10):5468–5473PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Saborio GP, Permanne B, Soto C (2001) Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature 411:810–813PubMedCrossRefGoogle Scholar
  125. 125.
    Soto C, Anderes L, Suardi S, Cardone F, Castilla J, Frossard MJ, Peano S, Saa P, Limido L, Carbonatto M, Ironside J, Torres JM, Pocchiari M, Tagliavini F (2005) Pre-symptomatic detection of prions by cyclic amplification of protein misfolding. FEBS Lett 579:638–642PubMedCrossRefGoogle Scholar
  126. 126.
    Wroe SJ, Pal S, Siddique D, Hyare H, Macfarlane R, Joiner S, Linehan JM, Brandner S, Wadsworth JD, Hewitt P et al (2006) Clinical presentation and pre-mortem diagnosis of variant Creutzfeldt-Jakob disease associated with blood transfusion: a case report. Lancet 368(9552):2061–2067PubMedCrossRefGoogle Scholar
  127. 127.
    Llewelyn CA, Hewitt PE, Knight RSG, Amar K, Cousens S, Mackenzie J, Will RG (2004) Possible transmission of variant Creutzfeld-Jakob disease by blood transfusion. Lancet 363:417–421PubMedCrossRefGoogle Scholar
  128. 128.
    Hewitt PE, Llewelyn CA, Mackenzie J, Will RG (2006) Creutzfeldt-Jakob disease and blood transfusion: results of the UK transfusion medicine epidemiological review study. Vox Sang 91(3):221–230PubMedCrossRefGoogle Scholar
  129. 129.
    Zou S, Fang CT, Schonberger LB (2008) Transfusion transmission of human prion diseases. Transfus Med Rev 22(1):58–99PubMedCrossRefGoogle Scholar
  130. 130.
    Tagliavini F, Prelli F, Porro M, Salmona M, Bugiani O, Frangione B (1992) A soluble form of prion protein in human cerebrospinal fluid: implications for prion-related encephalopathies. Biochem Biophys Res Commun 15(18):1398–1404CrossRefGoogle Scholar
  131. 131.
    Völkel D, Zimmermann K, Zerr I, Bodemer M, Lindner T, Turecek PL, Poser S, Schwarz HP (2001) Immunochemical determination of cellular prion protein in plasma from healthy subjects and patients with sporadic CJD or other neurologic diseases. Transfusion 41:441–448PubMedCrossRefGoogle Scholar
  132. 132.
    Meyne FGS, Ciesielczyk B, Heinemann U, Kransianski A, Meissner B, Zerr I (2009) Total prion protein levels in the cerebrospinal fluid are reduced in patients with various neurological disorders. J Alzheimers Dis 17:863–873PubMedCrossRefGoogle Scholar
  133. 133.
    Boesenberg-Grosse C, Schulz-Schaeffer WJ, Bodemer M, Ciesielczyk B, Meissner B, Krasnianski A, Bartl M, Heinemann U, Varges D, Eigenbrod S, Kretzschmar HA, Green A, Zerr I (2006) Brain-derived proteins in the CSF: do they correlate with brain pathology in CJD? BMC Neurol 6:35PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Zolg JW, Langen H (2004) How industry is approaching the search for new diagnostic markers and biomarkers. Mol Cell Proteomics 3(4):345–354PubMedCrossRefGoogle Scholar
  135. 135.
    Anderson NL, Anderson NG (1998) Proteome and proteomics: new technologies, new concepts, and new words. Electrophoresis 19(11):1853–1861PubMedCrossRefGoogle Scholar
  136. 136.
    Unlu M, Morgan ME, Minden JS (1997) Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18(11):2071–2077PubMedCrossRefGoogle Scholar
  137. 137.
    Wolters DA, Washburn MP, Yates JR 3rd (2001) An automated multidimensional protein identification technology for shotgun proteomics. Anal Chem 73(23):5683–5690PubMedCrossRefGoogle Scholar
  138. 138.
    Weston AD, Hood L (2004) Systems biology, proteomics, and the future of health care: toward predictive, preventative, and personalized medicine. J Proteome Res 3(2):179–196PubMedCrossRefGoogle Scholar
  139. 139.
    Zerr I, Bodemer M, Otto M, Poser S, Windl O, Kretzschmar HA, Gefeller O, Weber T (1996) Diagnosis of Creutzfeldt-Jakob disease by two-dimensional gel electrophoresis of cerebrospinal fluid. Lancet 348(9031):846–849PubMedCrossRefGoogle Scholar
  140. 140.
    Piubelli C, Fiorini M, Zanusso G, Milli A, Fasoli E, Monaco S, Righetti PG (2006) Searching for markers of Creutzfeldt-Jakob disease in cerebrospinal fluid by two-dimensional mapping. Proteomics 6(Suppl 1):256–261CrossRefGoogle Scholar
  141. 141.
    Cepek L, Brechlin P, Steinacker P, Mollenhauer B, Klingebiel E, Bibl M, Kretzschmar HA, Wiltfang J, Otto M (2007) Proteomic analysis of the cerebrospinal fluid of patients with reutzfeldt-Jakob disease. Dement Geriatr Cogn Disord 23:22–28PubMedCrossRefGoogle Scholar
  142. 142.
    Brechlin P, Jahn O, Steinacker P, Cepek L, Kratzin H, Lehnert S, Jesse S, Mollenhauer B, Kretzschmar HA, Wiltfang J, Otto M (2008) Cerebrospinal fluid-optimized two-dimensional difference gel electrophoresis (2-D DIGE) facilitates the differential diagnosis of Creutzfeldt-Jakob disease. Proteomics 8(20):4357–4366PubMedCrossRefGoogle Scholar
  143. 143.
    Choe LH, Green A, Knight RS, Thompson EJ, Lee KH (2002) Apopoliprotein E and other cerebrospinal fluid proteins differentiate ante mortem variant Creutzfeldt-Jakob disease from ante mortem sporadic Creutzfeldt-Jakob disease. Electrophoresis 23(14):2242–2246PubMedCrossRefGoogle Scholar
  144. 144.
    Demeester N, Castro G, Desrumaux C, De Geitere C, Fruchart JC, Santens P, Mulleners E, Engelborghs S, De Deyn PP, Vandekerckhove J, Rosseneu M, Labeur C (2000) Characterization and functional studies of lipoproteins, lipid transfer proteins, and lecithin:cholesterol acyltransferase in CSF of normal individuals and patients with Alzheimer's disease. J Lipid Res 41(6):963–974PubMedGoogle Scholar
  145. 145.
    Puchades M, Hansson SF, Nilsson CL, Andreasen N, Blennow K, Davidsson P (2003) Proteomic studies of potential cerebrospinal fluid protein markers for Alzheimer’s disease. Brain Res Mol Brain Res 118(1–2):140–146PubMedCrossRefGoogle Scholar
  146. 146.
    Iqbal K, Grundke-Iqbal I (1997) Elevated levels of tau and ubiquitin in brain and cerebrospinal fluid in Alzheimer’s disease. Int J Geriatr Psychiatry 9(Suppl 1):289–296Google Scholar
  147. 147.
    Green AJ, Ramljak S, Muller WE, Knight RS, Schroder HC (2002) 14-3-3 in the cerebrospinal fluid of patients with variant and sporadic Creutzfeldt-Jakob disease measured using capture assay able to detect low levels of 14-3-3 protein. Neurosci Lett 324:57–60PubMedCrossRefGoogle Scholar
  148. 148.
    Bleich S, Otto M, Zerr I, Kropp S, Kretzschmar HA, Wiltfang J (2005) Creutzfeldt-Jakob disease and homocysteine levels in plasma and cerebrospinal fluid. Gerontology 51(2):142–144PubMedCrossRefGoogle Scholar
  149. 149.
    Mollenhauer B, Cullen V, Kahn I, Krastins B, Outeiro TF, Pepivani I, Ng J, Schulz-Schaeffer W, Kretzschmar HA, McLean PJ, Trenkwalder C, Sarracino DA, Vonsattel JP, Locascio JJ, El-Agnaf OM, Schlossmacher MG (2008) Direct quantification of CSF alpha-synuclein by ELISA and first cross-sectional study in patients with neurodegeneration. Exp Neurol 213(2):315–325PubMedCrossRefGoogle Scholar
  150. 150.
    Kettlun A, Collados L, Garcia L, Cartier LA, Wolf ME, Mosnaim AD, Valenzuela MA (2003) Matrix metalloproteinase profile in patients with Creutzfeldt-Jakob disease. Int J Clin Pract 57(6):475–478PubMedGoogle Scholar
  151. 151.
    Holsinger RM, Lee JS, Boyd A, Masters CL, Collins SJ (2006) CSF BACE1 activity is increased in CJD and Alzheimer disease versus [corrected] other dementias. Neurology 67(4):710–712PubMedCrossRefGoogle Scholar
  152. 152.
    Cartier L, García L, Kettlun AM, Castañeda P, Collados L, Vásquez F, Giraudon P, Belin MF, Valenzuela MA (2004) Extracellular matrix protein expression in cerebrospinal fluid from patients with tropical spastic paraparesis associated with HTLV-I and Creutzfeldt-Jakob disease. Scand J Clin Lab Invest 64(2):101–107PubMedCrossRefGoogle Scholar
  153. 153.
    Manaka H, Kato T, Kurita K, Katagiri T, Shikama Y, Kujirai K, Kawanami T, Suzuki Y, Nihei K, Sasaki H et al (1992) Marked increase in cerebrospinal fluid ubiquitin in Creutzfeldt-Jakob disease. Neurosci Lett 139(1):47–49PubMedCrossRefGoogle Scholar
  154. 154.
    Alberti C, Gonzalez J, Maldonado H, Medina F, Barriga A, García L, Kettlun A, Collados L, Puente J, Cartier L, Valenzuela M (2009) Comparative study of CSF neurofilaments in HTLV-1-associated myelopathy/tropical spastic paraparesis and other neurological disorders. AIDS Res Hum Retrovir 25(8):803–809PubMedCrossRefGoogle Scholar
  155. 155.
    Albrecht D, Garcia L, Cartier L, Kettlun AM, Vergara C, Collados L, Valenzuela MA (2006) Trophic factors in cerebrospinal fluid and spinal cord of patients with tropical spastic paraparesis, HIV, and Creutzfeldt-Jakob disease. AIDS Res Hum Retrovir 22(3):248–254PubMedCrossRefGoogle Scholar
  156. 156.
    Atarashi R, Satoh K, Sano K, Fuse T, Yamaguchi N, Ishibashi D, Matsubara T, Nakagaki T, Yamanaka H, Shirabe S, Yamada M, Mizusawa H, Kitamoto T, Klug G, McGlade A, Collins SJ, Nishida N (2011) Ultrasensitive human prion detection in cerebrospinal fluid by real-time quaking-induced conversion. Nat Med 17:175–178PubMedCrossRefGoogle Scholar
  157. 157.
    McGuire LI, Peden AH, Orrú CD, Wilham JM, Appleford NE, Mallinson G, Andrews M, Head MW, Caughey B, Will RG, Knight RS, Green AJ (2012) Real time quaking-induced conversion analysis of cerebrospinal fluid in sporadic Creutzfeldt-Jakob disease. Ann Neurol 72:78–85CrossRefGoogle Scholar
  158. 158.
    Sano K, Satoh K, Atarashi R, Takashima H, Iwasaki Y, Yoshida M, Sanjo N, Murai H, Mizusawa H, Schmitz M, Zerr I, Kim YS, Nishida N (2013) Early detection of abnormal prion protein in genetic human prion diseases now possible using real-time QUIC assay. PLoS One 8:e54915PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Cramm M, Schmitz M, Karch A, Mitrova E, Kuhn F, Schroeder B, Raeber A, Varges D, Kim YS, Satoh K, Collins S, Zerr I (2016) Stability and reproducibility underscore utility of RT-QuIC for diagnosis of Creutzfeldt-Jakob disease. Mol Neurobiol 53:1896–1904PubMedCrossRefGoogle Scholar
  160. 160.
    Schmitz M, Ebert E, Stoeck K, Karch A, Collins S, Calero M, Sklaviadis T, Laplanche JL, Golanska E, Baldeiras I, Satoh K, Sanchez-Valle R, Ladogana A, Skinningsrud A, Hammarin AL, Mitrova E, Llorens F, Kim YS, Green A, Zerr I (2016) Validation of 14-3-3 protein as a marker in sporadic Creutzfeldt-Jakob disease diagnostic. Mol Neurobiol 53(4):2189–2199PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Department of NeurologyClinical Dementia Center, National Reference Center for TSE, Georg-August UniversityGöttingenGermany

Personalised recommendations