Advertisement

Prion Diseases pp 209-228 | Cite as

Synthetic Mammalian Prions

  • Fabio Moda
  • Edoardo Bistaffa
  • Joanna Narkiewicz
  • Giulia Salzano
  • Giuseppe LegnameEmail author
Protocol
  • 380 Downloads
Part of the Neuromethods book series (NM, volume 129)

Abstract

We describe a detailed method to generate different synthetic prions characterized by defined abnormal structures, which confer to each isolate specific infectious properties. When challenged in vitro or in vivo some of these isolates were able to cause illness and produced pathological features similar to that observed in animals or human with naturally occurring prion diseases, including the sporadic form of the Creutzfeldt–Jakob disease. Thus, synthetic prions are of fundamental importance to shed light on the intricate molecular events leading to the misfolding of the normal prion protein. Understanding prion conversion mechanism could allow designing therapeutic strategies aimed at blocking this process.

Key words

Synthetic prions Prion protein Fibrillization Aggregation Amyloid 

References

  1. 1.
    Wood JL, Lund LJ, Done SH (1992) The natural occurrence of scrapie in moufflon. Vet Rec 130(2):25–27CrossRefPubMedGoogle Scholar
  2. 2.
    Barlow RM (1972) Transmissible mink encephalopathy: pathogenesis and nature of the aetiological agent. J Clin Pathol Suppl 6:102–109CrossRefGoogle Scholar
  3. 3.
    Williams ES, Young S (1982) Spongiform encephalopathy of Rocky Mountain elk. J Wildl Dis 18(4):465–471CrossRefPubMedGoogle Scholar
  4. 4.
    Wells GA, Scott AC, Johnson CT, Gunning RF, Hancock RD, Jeffrey M et al (1987) A novel progressive spongiform encephalopathy in cattle. Vet Rec 121(18):419–420CrossRefPubMedGoogle Scholar
  5. 5.
    Wyatt JM, Pearson GR, Smerdon TN, Gruffydd-Jones TJ, Wells GA, Wilesmith JW (1991) Naturally occurring scrapie-like spongiform encephalopathy in five domestic cats. Vet Rec 129(11):233–236CrossRefPubMedGoogle Scholar
  6. 6.
    Gajdusek DC, Gibbs CJ, Alpers M (1966) Experimental transmission of a Kuru-like syndrome to chimpanzees. Nature 209(5025):794–796CrossRefPubMedGoogle Scholar
  7. 7.
    Gibbs CJ Jr, Gajdusek DC, Asher DM, Alpers MP, Beck E, Daniel PM et al (1968) Creutzfeldt-Jakob disease (spongiform encephalopathy): transmission to the chimpanzee. Science 161(3839):388–389CrossRefPubMedGoogle Scholar
  8. 8.
    Masters CL, Gajdusek DC, Gibbs CJ Jr (1981) Creutzfeldt-Jakob disease virus isolations from the Gerstmann-Straussler syndrome with an analysis of the various forms of amyloid plaque deposition in the virus-induced spongiform encephalopathies. Brain 104(3):559–588CrossRefPubMedGoogle Scholar
  9. 9.
    Medori R, Tritschler HJ, LeBlanc A, Villare F, Manetto V, Chen HY et al (1992) Fatal familial insomnia, a prion disease with a mutation at codon 178 of the prion protein gene. N Engl J Med 326(7):444–449CrossRefPubMedGoogle Scholar
  10. 10.
    Liberski PP (2012) Historical overview of prion diseases: a view from afar. Folia Neuropathol 50(1):1–12PubMedGoogle Scholar
  11. 11.
    Gordon WS (1946) Louping ill, tickbome fever and scrapie. Vet Rec 47:516–520Google Scholar
  12. 12.
    Millson GC et al (1976) The physico-chemical nature of the scrapie agent. In: Kimberlin RH (ed) Slow virus diseases of animals and man. North-Holland Publishing Company, Amsterdam, pp 243–266Google Scholar
  13. 13.
    Chandler RL (1961) Encephalopathy in mice produced by inoculation with scrapie brain material. Lancet 1(7191):1378–1379CrossRefPubMedGoogle Scholar
  14. 14.
    Gibbons RA, Hunter GD (1967) Nature of the scrapie agent. Nature 215(5105):1041–1043CrossRefPubMedGoogle Scholar
  15. 15.
    Adams DH (1970) The nature of the scrapie agent. A review of recent progress. Pathol Biol 18(9):559–577PubMedGoogle Scholar
  16. 16.
    Bastian FO (2005) Spiroplasma as a candidate agent for the transmissible spongiform encephalopathies. J Neuropathol Exp Neurol 64(10):833–838CrossRefPubMedGoogle Scholar
  17. 17.
    Liberski PP (2009) Kuru and D. Carleton Gajdusek: a close encounter. Folia Neuropathol 47(2):114–137PubMedGoogle Scholar
  18. 18.
    Cho HJ (1976) Is the scrapie agent a virus? Nature 262(5567):411–412CrossRefPubMedGoogle Scholar
  19. 19.
    Alper T, Cramp WA, Haig DA, Clarke MC (1967) Does the agent of scrapie replicate without nucleic acid? Nature 214(5090):764–766CrossRefPubMedGoogle Scholar
  20. 20.
    Kimberlin RH (1982) Scrapie agent: prions or virinos? Nature 297(5862):107–108CrossRefPubMedGoogle Scholar
  21. 21.
    Griffith JS (1967) Self-replication and scrapie. Nature 215(5105):1043–1044CrossRefPubMedGoogle Scholar
  22. 22.
    Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science 216(4542):136–144CrossRefPubMedGoogle Scholar
  23. 23.
    Bolton DC, McKinley MP, Prusiner SB (1982) Identification of a protein that purifies with the scrapie prion. Science 218(4579):1309–1311CrossRefPubMedGoogle Scholar
  24. 24.
    Gabizon R, McKinley MP, Groth D, Prusiner SB (1988) Immunoaffinity purification and neutralization of scrapie prion infectivity. Proc Natl Acad Sci U S A 85(18):6617–6621CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Chesebro B, Race R, Wehrly K, Nishio J, Bloom M, Lechner D et al (1985) Identification of scrapie prion protein-specific mRNA in scrapie-infected and uninfected brain. Nature 315(6017):331–333CrossRefGoogle Scholar
  26. 26.
    Stahl N, Baldwin MA, Teplow DB, Hood L, Gibson BW, Burlingame AL et al (1993) Structural studies of the scrapie prion protein using mass spectrometry and amino acid sequencing. Biochemistry 32(8):1991–2002CrossRefPubMedGoogle Scholar
  27. 27.
    Hsiao K, Baker HF, Crow TJ, Poulter M, Owen F, Terwilliger JD et al (1989) Linkage of a prion protein missense variant to Gerstmann-Straussler syndrome. Nature 338(6213):342–345CrossRefPubMedGoogle Scholar
  28. 28.
    Collinge J (2001) Prion diseases of humans and animals: their causes and molecular basis. Annu Rev Neurosci 24:519–550CrossRefPubMedGoogle Scholar
  29. 29.
    Bueler H, Aguzzi A, Sailer A, Greiner RA, Autenried P, Aguet M et al (1993) Mice devoid of PrP are resistant to scrapie. Cell 73(7):1339–1347CrossRefPubMedGoogle Scholar
  30. 30.
    Kocisko DA, Come JH, Priola SA, Chesebro B, Raymond GJ, Lansbury PT et al (1994) Cell-free formation of protease-resistant prion protein. Nature 370(6489):471–474CrossRefPubMedGoogle Scholar
  31. 31.
    Bessen RA, Kocisko DA, Raymond GJ, Nandan S, Lansbury PT, Caughey B (1995) Non-genetic propagation of strain-specific properties of scrapie prion protein. Nature 375(6533):698–700CrossRefPubMedGoogle Scholar
  32. 32.
    Hill AF, Antoniou M, Collinge J (1999) Protease-resistant prion protein produced in vitro lacks detectable infectivity. J Gen Virol 80(Pt 1):11–14CrossRefPubMedGoogle Scholar
  33. 33.
    Baskakov IV, Legname G, Baldwin MA, Prusiner SB, Cohen FE (2002) Pathway complexity of prion protein assembly into amyloid. J Biol Chem 277(24):21140–21148CrossRefPubMedGoogle Scholar
  34. 34.
    Baskakov IV, Legname G, Prusiner SB, Cohen FE (2001) Folding of prion protein to its native alpha-helical conformation is under kinetic control. J Biol Chem 276(23):19687–19690CrossRefPubMedGoogle Scholar
  35. 35.
    Baskakov IV, Aagaard C, Mehlhorn I, Wille H, Groth D, Baldwin MA et al (2000) Self-assembly of recombinant prion protein of 106 residues. Biochemistry 39(10):2792–2804CrossRefPubMedGoogle Scholar
  36. 36.
    Kaneko K, Ball HL, Wille H, Zhang H, Groth D, Torchia M et al (2000) A synthetic peptide initiates Gerstmann-Straussler-Scheinker (GSS) disease in transgenic mice. J Mol Biol 295(4):997–1007CrossRefPubMedGoogle Scholar
  37. 37.
    Hsiao KK, Groth D, Scott M, Yang SL, Serban H, Rapp D et al (1994) Serial transmission in rodents of neurodegeneration from transgenic mice expressing mutant prion protein. Proc Natl Acad Sci U S A 91(19):9126–9130CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Nazor KE, Kuhn F, Seward T, Green M, Zwald D, Purro M et al (2005) Immunodetection of disease-associated mutant PrP, which accelerates disease in GSS transgenic mice. EMBO J 24(13):2472–2480CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Tremblay P, Ball HL, Kaneko K, Groth D, Hegde RS, Cohen FE et al (2004) Mutant PrPSc conformers induced by a synthetic peptide and several prion strains. J Virol 78(4):2088–2099CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Benetti F, Legname G (2009) De novo mammalian prion synthesis. Prion 3(4):213–219CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Legname G, Baskakov IV, Nguyen HO, Riesner D, Cohen FE, DeArmond SJ et al (2004) Synthetic mammalian prions. Science 305(5684):673–676CrossRefPubMedGoogle Scholar
  42. 42.
    Peretz D, Scott MR, Groth D, Williamson RA, Burton DR, Cohen FE et al (2001) Strain-specified relative conformational stability of the scrapie prion protein. Protein Sci 10(4):854–863CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Colby DW, Giles K, Legname G, Wille H, Baskakov IV, DeArmond SJ et al (2009) Design and construction of diverse mammalian prion strains. Proc Natl Acad Sci USA 106(48):20417–20422CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Collinge J, Clarke AR (2007) A general model of prion strains and their pathogenicity. Science 318(5852):930–936CrossRefPubMedGoogle Scholar
  45. 45.
    Collinge J, Sidle KC, Meads J, Ironside J, Hill AF (1996) Molecular analysis of prion strain variation and the aetiology of ‘new variant’ CJD. Nature 383(6602):685–690CrossRefPubMedGoogle Scholar
  46. 46.
    DeArmond SJ, Sanchez H, Yehiely F, Qiu Y, Ninchak-Casey A, Daggett V et al (1997) Selective neuronal targeting in prion disease. Neuron 19(6):1337–1348CrossRefPubMedGoogle Scholar
  47. 47.
    Tuzi NL, Cancellotti E, Baybutt H, Blackford L, Bradford B, Plinston C et al (2008) Host PrP glycosylation: a major factor determining the outcome of prion infection. PLoS Biol 6(4):e100CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    McKenzie D, Kaczkowski J, Marsh R, Aiken J (1994) Amphotericin B delays both scrapie agent replication and PrP-res accumulation early in infection. J Virol 68(11):7534–7536PubMedPubMedCentralGoogle Scholar
  49. 49.
    Supattapone S, Wille H, Uyechi L, Safar J, Tremblay P, Szoka FC et al (2001) Branched polyamines cure prion-infected neuroblastoma cells. J Virol 75(7):3453–3461CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Bartz JC, Bessen RA, McKenzie D, Marsh RF, Aiken JM (2000) Adaptation and selection of prion protein strain conformations following interspecies transmission of transmissible mink encephalopathy. J Virol 74(12):5542–5547CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Li J, Browning S, Mahal SP, Oelschlegel AM, Weissmann C (2010) Darwinian evolution of prions in cell culture. Science 327(5967):869–872CrossRefPubMedGoogle Scholar
  52. 52.
    Makarava N, Baskakov IV (2013) The evolution of transmissible prions: the role of deformed templating. PLoS Pathog 9(12):e1003759CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Baskakov IV (2014) The many shades of prion strain adaptation. Prion 8(2)Google Scholar
  54. 54.
    Legname G, Nguyen HO, Baskakov IV, Cohen FE, Dearmond SJ, Prusiner SB (2005) Strain-specified characteristics of mouse synthetic prions. Proc Natl Acad Sci U S A 102(6):2168–2173CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Legname G, Nguyen HO, Peretz D, Cohen FE, DeArmond SJ, Prusiner SB (2006) Continuum of prion protein structures enciphers a multitude of prion isolate-specified phenotypes. Proc Natl Acad Sci U S A 103(50):19105–19110CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Ghaemmaghami S, Watts JC, Nguyen HO, Hayashi S, DeArmond SJ, Prusiner SB (2011) Conformational transformation and selection of synthetic prion strains. J Mol Biol 413(3):527–542CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Ghaemmaghami S, Ahn M, Lessard P, Giles K, Legname G, DeArmond SJ et al (2009) Continuous quinacrine treatment results in the formation of drug-resistant prions. PLoS Pathog 5(11):e1000673CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Chen B, Bruce KL, Newnam GP, Gyoneva S, Romanyuk AV, Chernoff YO (2010) Genetic and epigenetic control of the efficiency and fidelity of cross-species prion transmission. Mol Microbiol 76(6):1483–1499CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Makarava N, Kovacs GG, Bocharova O, Savtchenko R, Alexeeva I, Budka H et al (2010) Recombinant prion protein induces a new transmissible prion disease in wild-type animals. Acta Neuropathol 119(2):177–187CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Saborio GP, Permanne B, Soto C (2001) Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature 411(6839):810–813CrossRefPubMedGoogle Scholar
  61. 61.
    Deleault NR, Harris BT, Rees JR, Supattapone S (2007) Formation of native prions from minimal components in vitro. Proc Natl Acad Sci U S A 104(23):9741–9746CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Gonzalez-Montalban N, Lee YJ, Makarava N, Savtchenko R, Baskakov IV (2013) Changes in prion replication environment cause prion strain mutation. FASEB J 27(9):3702–3710CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Geoghegan JC, Valdes PA, Orem NR, Deleault NR, Williamson RA, Harris BT et al (2007) Selective incorporation of polyanionic molecules into hamster prions. J Biol Chem 282(50):36341–36353CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Wang F, Yang F, Hu Y, Wang X, Wang X, Jin C et al (2007) Lipid interaction converts prion protein to a PrPSc-like proteinase K-resistant conformation under physiological conditions. Biochemistry 46(23):7045–7053CrossRefPubMedGoogle Scholar
  65. 65.
    Deleault NR, Walsh DJ, Piro JR, Wang F, Wang X, Ma J et al (2012) Cofactor molecules maintain infectious conformation and restrict strain properties in purified prions. Proc Natl Acad Sci U S A 109(28):E1938–E1946CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Deleault NR, Piro JR, Walsh DJ, Wang F, Ma J, Geoghegan JC et al (2012) Isolation of phosphatidylethanolamine as a solitary cofactor for prion formation in the absence of nucleic acids. Proc Natl Acad Sci U S A 109(22):8546–8551CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Zhang Z, Zhang Y, Wang F, Wang X, Xu Y, Yang H et al (2013) De novo generation of infectious prions with bacterially expressed recombinant prion protein. FASEB J 27(12):4768–4775CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Barria MA, Mukherjee A, Gonzalez-Romero D, Morales R, Soto C (2009) De novo generation of infectious prions in vitro produces a new disease phenotype. PLoS Pathog 5(5):e1000421CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Wang F, Wang X, Yuan CG, Ma J (2010) Generating a prion with bacterially expressed recombinant prion protein. Science 327(5969):1132–1135CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Wang F, Zhang Z, Wang X, Li J, Zha L, Yuan CG et al (2012) Genetic informational RNA is not required for recombinant prion infectivity. J Virol 86(3):1874–1876CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Moda F, Le TN, Aulic S, Bistaffa E, Campagnani I, Virgilio T et al (2015) Synthetic prions with novel strain-specified properties. PLoS Pathog 11(12):e1005354CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Bosque PJ, Prusiner SB (2000) Cultured cell sublines highly susceptible to prion infection. J Virol 74(9):4377–4386CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Fabio Moda
    • 1
  • Edoardo Bistaffa
    • 1
    • 2
  • Joanna Narkiewicz
    • 2
  • Giulia Salzano
    • 2
  • Giuseppe Legname
    • 2
    Email author
  1. 1.IRCCS Foundation Carlo Besta Neurological InstituteMilanItaly
  2. 2.Scuola Internazionale Superiore di Studi Avanzati (SISSA)TriesteItaly

Personalised recommendations