Prion Diseases pp 197-207 | Cite as

Exosomes in Prion Diseases

  • Alexander Hartmann
  • Hermann Altmeppen
  • Susanne Krasemann
  • Markus GlatzelEmail author
Part of the Neuromethods book series (NM, volume 129)


Dementias are characterized by generation and tissue deposition of proteins altered in their secondary or tertiary structure. Prion diseases are prominent and well-studied examples of these diseases. Initiation of prion disease is associated to the conversion of the cellular prion protein (PrPC) to its pathogenic isoform (PrPSc). Spread of PrPSc throughout the central nervous system leads to disease progression and is achieved by cell-to-cell transfer, axonal or nanotube-mediated transport or exosomes.

In this chapter we describe how to isolate, purify, and quality control exosomes, and provide helpful notes for practical guidance and troubleshooting in these techniques.

Key words

Exosomes Prion protein PrP Neurotoxicity Neurodegeneration Protein aggregation Protocol 


  1. 1.
    Aguzzi A, Lakkaraju AK (2016) Cell biology of prions and prionoids: a status report. Trends Cell Biol 26(1):40–51CrossRefPubMedGoogle Scholar
  2. 2.
    Glatzel M, Stoeck K, Seeger H, Luhrs T, Aguzzi A (2005) Human prion diseases: molecular and clinical aspects. Arch Neurol 62(4):545–552CrossRefPubMedGoogle Scholar
  3. 3.
    Hachinski V, Sposato LA (2013) Dementia: from muddled diagnoses to treatable mechanisms. Brain 136(9):2652–2654CrossRefPubMedGoogle Scholar
  4. 4.
    Schipanski A, Lange S, Segref A, Gutschmidt A, Lomas DA, Miranda E et al (2013) A novel interaction between ageing and ER overload in a protein conformational dementia. Genetics 193(3):865–876CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Glatzel M, Linsenmeier L, Dohler F, Krasemann S, Puig B, Altmeppen HC (2015) Shedding light on prion disease. Prion 9(4):244–256CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Moreno-Gonzalez I, Soto C (2012) Natural animal models of neurodegenerative protein misfolding diseases. Curr Pharm Des 18(8):1148–1158CrossRefPubMedGoogle Scholar
  7. 7.
    Geissen M, Krasemann S, Matschke J, Glatzel M (2007) Understanding the natural variability of prion diseases. Vaccine 25(30):5631–5636CrossRefPubMedGoogle Scholar
  8. 8.
    Colby DW, Prusiner SB (2011) Prions. Cold Spring Harb Perspect Biol 3(1):a006833CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Glatzel M, Aguzzi A (2000) PrP(C) expression in the peripheral nervous system is a determinant of prion neuroinvasion. J Gen Virol 81(11):2813–2821CrossRefPubMedGoogle Scholar
  10. 10.
    Magalhaes AC, Baron GS, Lee KS, Steele-Mortimer O, Dorward D, Prado MA et al (2005) Uptake and neuritic transport of scrapie prion protein coincident with infection of neuronal cells. J Neurosci 25(21):5207–5216CrossRefPubMedGoogle Scholar
  11. 11.
    Porto-Carreiro I, Fevrier B, Paquet S, Vilette D, Raposo G (2005) Prions and exosomes: from PrPc trafficking to PrPsc propagation. Blood Cells Mol Dis 35(2):143–148CrossRefPubMedGoogle Scholar
  12. 12.
    Alais S, Simoes S, Baas D, Lehmann S, Raposo G, Darlix JL et al (2008) Mouse neuroblastoma cells release prion infectivity associated with exosomal vesicles. Biol Cell 100(10):603–618CrossRefPubMedGoogle Scholar
  13. 13.
    Wadia JS, Schaller M, Williamson RA, Dowdy SF (2008) Pathologic prion protein infects cells by lipid-raft dependent macropinocytosis. PLoS One 3(10):e3314CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Vella LJ, Sharples RA, Nisbet RM, Cappai R, Hill AF (2008) The role of exosomes in the processing of proteins associated with neurodegenerative diseases. Eur Biophys J 37(3):323–332CrossRefPubMedGoogle Scholar
  15. 15.
    Fevrier B, Vilette D, Archer F, Loew D, Faigle W, Vidal M et al (2004) Cells release prions in association with exosomes. Proc Natl Acad Sci U S A 101(26):9683–9688CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Leblanc P, Alais S, Porto-Carreiro I, Lehmann S, Grassi J, Raposo G et al (2006) Retrovirus infection strongly enhances scrapie infectivity release in cell culture. EMBO J 25(12):2674–2685CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Altmeppen HC, Prox J, Puig B, Dohler F, Falker C, Krasemann S et al (2013) Roles of endoproteolytic alpha-cleavage and shedding of the prion protein in neurodegeneration. FEBS J 280(18):4338–4347CrossRefPubMedGoogle Scholar
  18. 18.
    Kunzi V, Glatzel M, Nakano MY, Greber UF, Van Leuven F, Aguzzi A (2002) Unhampered prion neuroinvasion despite impaired fast axonal transport in transgenic mice overexpressing four-repeat tau. J Neurosci 22(17):7471–7477PubMedGoogle Scholar
  19. 19.
    Gousset K, Schiff E, Langevin C, Marijanovic Z, Caputo A, Browman DT et al (2009) Prions hijack tunnelling nanotubes for intercellular spread. Nat Cell Biol 11(3):328–336CrossRefPubMedGoogle Scholar
  20. 20.
    Varga Z, Yuana Y, Grootemaat AE, van der Pol E, Gollwitzer C, Krumrey M et al (2014) Towards traceable size determination of extracellular vesicles. J Extracell Vesicles 3(1):23298. doi: 10.3402/jev.v3.23298 CrossRefGoogle Scholar
  21. 21.
    Lakkaraju A, Rodriguez-Boulan E (2008) Itinerant exosomes: emerging roles in cell and tissue polarity. Trends Cell Biol 18(5):199–209CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Silverman JM, Clos J, de’Oliveira CC, Shirvani O, Fang Y, Wang C et al (2010) An exosome-based secretion pathway is responsible for protein export from Leishmania and communication with macrophages. J Cell Sci 123(6):842–852CrossRefPubMedGoogle Scholar
  23. 23.
    Testa JS, Apcher GS, Comber JD, Eisenlohr LC (2010) Exosome-driven antigen transfer for MHC class II presentation facilitated by the receptor binding activity of influenza hemagglutinin. J Immunol 185(11):6608–6616CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Faure J, Lachenal G, Court M, Hirrlinger J, Chatellard-Causse C, Blot B et al (2006) Exosomes are released by cultured cortical neurones. Mol Cell Neurosci 31(4):642–648CrossRefPubMedGoogle Scholar
  25. 25.
    Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M et al (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10(12):1470–1476CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kramer-Albers EM, Bretz N, Tenzer S, Winterstein C, Mobius W, Berger H et al (2007) Oligodendrocytes secrete exosomes containing major myelin and stress-protective proteins: trophic support for axons? Proteomics Clin Appl 1(11):1446–1461CrossRefPubMedGoogle Scholar
  27. 27.
    Kogure T, Lin WL, Yan IK, Braconi C, Patel T (2011) Intercellular nanovesicle-mediated microRNA transfer: a mechanism of environmental modulation of hepatocellular cancer cell growth. Hepatology 54(4):1237–1248CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Simons M, Raposo G (2009) Exosomes—vesicular carriers for intercellular communication. Curr Opin Cell Biol 21(4):575–581CrossRefPubMedGoogle Scholar
  29. 29.
    Vella LJ, Sharples RA, Lawson VA, Masters CL, Cappai R, Hill AF (2007) Packaging of prions into exosomes is associated with a novel pathway of PrP processing. J Pathol 211(5):582–590CrossRefPubMedGoogle Scholar
  30. 30.
    Falker C, Hartmann A, Guett I, Dohler F, Altmeppen H, Betzel C et al (2016) Exosomal PrP drives fibrillization of amyloid beta and counteracts amyloid beta-mediated neurotoxicity. J Neurochem 137(1):88–100. doi: 10.1111/jnc.13514 CrossRefPubMedGoogle Scholar
  31. 31.
    Raposo G, Fevrier B, Vilette D, Archer F, Loew D, Faigle W et al (2004) Cells release prions in association with exosomes. Proc Natl Acad Sci U S A 101:9683–9688CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Rajendran L, Honsho M, Zahn TR, Keller P, Geiger KD, Verkade P et al (2006) Alzheimer's disease beta-amyloid peptides are released in association with exosomes. Proc Natl Acad Sci U S A 103(30):11172–11177CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Yuyama K, Sun H, Sakai S, Mitsutake S, Okada M, Tahara H et al (2014) Decreased amyloid-beta pathologies by intracerebral loading of glycosphingolipid-enriched exosomes in Alzheimer model mice. J Biol Chem 289(35):24488–24498CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Tauro BJ, Greening DW, Mathias RA, Ji H, Mathivanan S, Scott AM et al (2012) Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods 56(2):293–304CrossRefPubMedGoogle Scholar
  35. 35.
    Greening DW, Xu R, Ji H, Tauro BJ, Simpson RJ (2015) A protocol for exosome isolation and characterization: evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methods. Methods Mol Biol 1295:179–209CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Alexander Hartmann
    • 1
  • Hermann Altmeppen
    • 1
  • Susanne Krasemann
    • 1
  • Markus Glatzel
    • 1
    Email author
  1. 1.Institute of NeuropathologyUniversity Medical Center Hamburg-EppendorfHamburgGermany

Personalised recommendations