Prion Diseases pp 183-196 | Cite as

Analysis of Charge Isoforms of the Scrapie Prion Protein Using Two-Dimensional Electrophoresis

  • Elizaveta Katorcha
  • Ilia V. BaskakovEmail author
Part of the Neuromethods book series (NM, volume 129)


Recent years witnessed extraordinary rise of interest to sialylation and, specifically, to its role in host–pathogen interactions. Prions or PrPSc are proteinaceous infectious agents that consist of misfolded, aggregated, self-replicating states of a sialoglycoprotein called the prion protein or PrPC. Prions are not conventional pathogens. Nevertheless, due to sialylation of N-linked glycans, prions may use mechanisms similar to those exploited by microbial or viral pathogens in invading a host. Recent studies revealed that sialylation of PrPSc controls prion infectivity, replication rate, and strain-specific glycoform ratios. As such, sialylation is of paramount importance to prion pathogenesis. For assessing sialylation status of PrPSc, we developed reliable protocol that involves two-dimensional electrophoresis followed by Western blot (2D). The current chapter describes the procedure for analysis of sialylation status of PrPSc from various sources including brain, spleen, cultured cells, or Protein Misfolding Cyclic Amplification using 2D.

Key words

Prion diseases Prion proteins Two-dimensional electrophoresis Sialylation Sialic acid Glycosylation 



This work was supported by the National Institute of Health grant R01 NS045585.


  1. 1.
    Varki A (2008) Sialic acids in human health and disease. Trends Mol Med 14(8):351–360CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Varki A (2010) Uniquely human evolution of sialic acid genetics and biology. Proc Natl Acad Sci U S A 107 (Supplement_2):8939–8946CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science 216(4542):136–144CrossRefPubMedGoogle Scholar
  4. 4.
    Legname G, Baskakov IV, Nguyen HOB, Riesner D, Cohen FE, DeArmond SJ, Prusiner SB (2004) Synthetic mammalian prions. Science 305(5684):673–676CrossRefPubMedGoogle Scholar
  5. 5.
    Katorcha E, Makarava N, Savtchenko R, D’Azzo A, Baskakov IV (2014) Sialylation of prion protein controls the rate of prion amplification, the cross-species barrier, the ratio of PrPSc glycoform and prion infectivity. PLoS Pathog 10(9):e1004366CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Srivastava S, Makarava N, Katorcha E, Savtchenko R, Brossmer R, Baskakov IV (2015) Post-conversion sialylation of prions in lymphoid tissues. Proc Natl Acad Sci U S A 112(48):E6654–E6662CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Katorcha E, Makarava N, Savtchenko R, Baskakov IV (2015) Sialylation of the prion protein glycans controls prion replication rate and glycoform ratio. Sci Rep 5(1):16912CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Makarava N, Savtchenko R, Baskakov IV (2015) Two alternative pathways for generating transmissible prion disease de novo. Acta Neuropathol Commun 3(1):69–13CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Makarava N, Savtchenko R, Baskakov IV (2013) Selective amplification of classical and atypical prions using modified protein misfolding cyclic amplification. J Biol Chem 288(1):33–41CrossRefPubMedGoogle Scholar
  10. 10.
    Bolton DC, Meyer RK, Prusiner SB (1985) Scrapie PrP 27-30 is a sialoglycoprotein. J Virol 53(2):596–606PubMedPubMedCentralGoogle Scholar
  11. 11.
    Turk E, Teplow DB, Hood LE, Prusiner SB (1988) Purification and properties of the cellular and scrapie hamster prion proteins. Eur J Biochem 176(1):21–30CrossRefPubMedGoogle Scholar
  12. 12.
    Endo T, Groth D, Prusiner SB, Kobata A (1989) Diversity of oligosaccharide structures linked to asparagines of the scrapie prion protein. Biochemistry 28(21):8380–8388CrossRefPubMedGoogle Scholar
  13. 13.
    Stimson E, Hope J, Chong A, Burlingame AL (1999) Site-specific characterization of the N-linked glycans of murine prion protein by high-performance liquid chromatography/electrospray mass spectrometry and exoglycosidase digestions. Biochemistry 38(15):4885–4895CrossRefPubMedGoogle Scholar
  14. 14.
    Stahl N, Baldwin MA, Teplow DB, Hood L, Gibson BW, Burlingame AL, Prusiner SB (1993) Structural studies of the scrapie prion protein using mass spectrometry and amino acid sequencing. Biochemistry 32(8):1991–2002CrossRefPubMedGoogle Scholar
  15. 15.
    Rudd PM, Endo T, Colominas C, Groth D, Wheeler SF, Harvey DJ, Wormald MR, Serban H, Prusiner SB, Kobata A et al (1999) Glycosylation differences between the normal and pathogenic prion protein isoforms. Proc Natl Acad Sci U S A 96(23):13044–13049CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Stahl N, Baldwin MA, Hecker R, Pan KM, Burlingame AL, Prusiner SB (1992) Glycosylinositol phospholipid anchors of the scrapie and cellular prion proteins contain sialic acid. Biochemistry 31(21):5043–5053CrossRefPubMedGoogle Scholar
  17. 17.
    Katorcha E, Klimova N, Makarava N, Savtchenko R, Pan X, Annunziata I, Takahashi K, Miyagi T, Pshezhetsky AV, D’Azzo A et al (2015) Knocking out of cellular neuraminidases Neu1, Neu3 or Neu4 does not affect sialylation status of the prion protein. PLoS One 10(11):e0143218CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Makarava N, Kovacs GG, Savtchenko R, Alexeeva I, Budka H, Rohwer RG, Baskakov IV (2012) Stabilization of a prion strain of synthetic origin requires multiple serial passages. J Biol Chem 287(36):30205–30214CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Gonzalez-Montalban N, Makarava N, Ostapchenko VG, Savtchenko R, Alexeeva I, Rohwer RG, Baskakov IV (2011) Highly efficient protein misfolding cyclic amplification. PLoS Pathog 7(2):e1001277CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Department of Anatomy and Neurobiology, Center for Biomedical Engineering and TechnologyUniversity of Maryland School of MedicineBaltimoreUSA

Personalised recommendations