Skip to main content

In Vitro Modulation of Endogenous Alternative Splicing Using Splice-Switching Antisense Oligonucleotides

  • Protocol
  • First Online:
mRNA Processing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1648))

Abstract

Regulation of alternative splicing can be harnessed by antisense-based compounds to control gene expression. Antisense-mediated splicing interference has become a valuable molecular tool to modulate endogenous alternative splicing patterns, to correct cryptic or aberrant splicing, to reduce gene expression by triggering nonsense-mediated mRNA decay, and to activate intronic polyadenylation, both in vitro and in vivo. Here, we describe methods to induce and analyze the modulation of RNA processing, using modified splice-switching antisense oligonucleotides, such as phosphorodiamidate morpholino (PMO).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Spraggon L, Cartegni L (2013) Antisense modulation of RNA processing as a therapeutic approach in cancer therapy. Drug Discov Today Ther Strateg 10(3):e139–e148

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kole R, Krainer AR, Altman S (2012) RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat Rev Drug Discov 11(2):125–140

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Vorlova S et al (2011) Induction of antagonistic soluble decoy receptor tyrosine kinases by intronic polyA activation. Mol Cell 43(6):927–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Spraggon L, Cartegni L (2013) U1 snRNP-dependent suppression of polyadenylation: physiological role and therapeutic opportunities in cancer. Int J Cell Biol 2013:846510

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cartegni L, Chew SL, Krainer AR (2002) Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet 3(4):285–298

    Article  CAS  PubMed  Google Scholar 

  6. Liu HX, Zhang M, Krainer AR (1998) Identification of functional exonic splicing enhancer motifs recognized by individual SR proteins. Genes Dev 12(13):1998–2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schaal TD, Maniatis T (1999) Multiple distinct splicing enhancers in the protein-coding sequences of a constitutively spliced pre-mRNA. Mol Cell Biol 19(1):261–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fairbrother WG et al (2002) Predictive identification of exonic splicing enhancers in human genes. Science 297(5583):1007–1013

    Article  CAS  PubMed  Google Scholar 

  9. Cartegni L et al (2003) ESEfinder: a web resource to identify exonic splicing enhancers. Nucleic Acids Res 31(13):3568–3571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Van Nostrand EL, Huelga SC, Yeo GW (2016) Experimental and computational considerations in the study of RNA-binding protein-RNA interactions. Adv Exp Med Biol 907:1–28

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zhang XH, Chasin LA (2004) Computational definition of sequence motifs governing constitutive exon splicing. Genes Dev 18(11):1241–1250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Aznarez I et al (2008) A systematic analysis of intronic sequences downstream of 5′ splice sites reveals a widespread role for U-rich motifs and TIA1/TIAL1 proteins in alternative splicing regulation. Genome Res 18(8):1247–1258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang Y, Wang Z (2014) Systematical identification of splicing regulatory cis-elements and cognate trans-factors. Methods 65(3):350–358

    Article  CAS  PubMed  Google Scholar 

  14. Liu HX et al (2000) Exonic splicing enhancer motif recognized by human SC35 under splicing conditions. Mol Cell Biol 20(3):1063–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tian H, Kole R (2001) Strong RNA splicing enhancers identified by a modified method of cycled selection interact with SR protein. J Biol Chem 276(36):33833–33839

    Article  CAS  PubMed  Google Scholar 

  16. Wang Z et al (2004) Systematic identification and analysis of exonic splicing silencers. Cell 119(6):831–845

    Article  CAS  PubMed  Google Scholar 

  17. Cartegni L et al (2006) Determinants of exon 7 splicing in the spinal muscular atrophy genes, SMN1 and SMN2. Am J Hum Genet 78(1):63–77

    Article  CAS  PubMed  Google Scholar 

  18. Zammarchi F et al (2011) Antitumorigenic potential of STAT3 alternative splicing modulation. Proc Natl Acad Sci U S A 108(43):17779–17784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lefave CV et al (2011) Splicing factor hnRNPH drives an oncogenic splicing switch in gliomas. EMBO J 30(19):4084–4097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hua Y et al (2007) Enhancement of SMN2 exon 7 inclusion by antisense oligonucleotides targeting the exon. PLoS Biol 5(4):e73

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hinrich AJ et al (2016) Therapeutic correction of ApoER2 splicing in Alzheimer's disease mice using antisense oligonucleotides. EMBO Mol Med 8(4):328–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cartegni L, Krainer AR (2003) Correction of disease-associated exon skipping by synthetic exon-specific activators. Nat Struct Biol 10(2):120–125

    Article  CAS  PubMed  Google Scholar 

  23. Ghigna C et al (2010) Pro-metastatic splicing of Ron proto-oncogene mRNA can be reversed: therapeutic potential of bifunctional oligonucleotides and indole derivatives. RNA Biol 7(4):495–503

    Article  CAS  PubMed  Google Scholar 

  24. Hoque M, Li W, Tian B (2014) Accurate mapping of cleavage and polyadenylation sites by 3′ region extraction and deep sequencing. Methods Mol Biol 1125:119–129

    Article  CAS  PubMed  Google Scholar 

  25. Tian B et al (2005) A large-scale analysis of mRNA polyadenylation of human and mouse genes. Nucleic Acids Res 33(1):201–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hoque M et al (2013) Analysis of alternative cleavage and polyadenylation by 3′ region extraction and deep sequencing. Nat Methods 10(2):133–139

    Article  CAS  PubMed  Google Scholar 

  27. Popp MW, Maquat LE (2013) Organizing principles of mammalian nonsense-mediated mRNA decay. Annu Rev Genet 47:139–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Horner RM (2006) Relative RT-PCR: determining the linear range of amplification and optimizing the primers:competimers ratio. CSH Protoc 2006(1)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Cartegni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Park, J.E., Cartegni, L. (2017). In Vitro Modulation of Endogenous Alternative Splicing Using Splice-Switching Antisense Oligonucleotides. In: Shi, Y. (eds) mRNA Processing. Methods in Molecular Biology, vol 1648. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7204-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7204-3_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7203-6

  • Online ISBN: 978-1-4939-7204-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics