Skip to main content

Laboratory Testing for von Willebrand Factor Activity by Glycoprotein Ib Binding Assays (VWF:GPIb)

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1646))

Abstract

In addition to assessment of von Willebrand factor (VWF) antigen (VWF:Ag), the first-line laboratory investigation of possible von Willebrand disease (VWD) often includes an assay to measure GPIb (glycoprotein Ib) binding activity of VWF. A decreased GPIb binding activity is characteristic for most of the VWD types. For many years, the most frequently used assay for measuring GPIb binding activity was the ristocetin cofactor assay (VWF:RCo), which measures the agglutination of fixed human platelets by VWF in the presence of ristocetin. Because of performance issues, including high assay variability and a lack of VWF sensitivity, this assay is currently being replaced or supplemented by assays based on the binding of VWF to recombinant GPIb. One published method (now abbreviated VWF:GPIbR) uses wild-type GPIb for triggering the binding reaction in the presence of ristocetin. Another more widely used method (now abbreviated VWF:GPIbM) uses gain-of-function GPIb without ristocetin; this permits spontaneous binding of VWF to GPIb and avoids problems associated with the nonphysiological substance ristocetin. The binding of VWF to GPIb can be quantified by using different principles, e.g., ELISA, particle agglutination, or chemiluminescence. The following chapter describes a ristocetin-free method based on particle agglutination in more detail.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Abbreviations

GPIb:

Glycoprotein Ib

MAB:

Monoclonal antibody

VWD:

von Willebrand disease

VWF:

von Willebrand factor

VWF:CB:

Collagen binding assay

VWF:GPIbM:

von Willebrand factor activity assay based on the spontaneous binding of VWF to a gain-of-function mutant GPIb fragment

VWF:GPIbR:

von Willebrand factor activity assay based on the ristocetin-induced binding of VWF to a wildtype GPIb fragment

VWF:RCo:

Ristocetin cofactor assay

References

  1. Curnow J, Pasalic L, Favaloro EJ (2016) Treatment of von Willebrand disease. Semin Thromb Hemost 42:133–146

    Article  CAS  PubMed  Google Scholar 

  2. Jong A, Eikenboom J (2016) Developments in the diagnostic procedures of von Willebrand disease. J Thromb Hemost 14:449–460

    Article  Google Scholar 

  3. Bryckaert M, Rosa JP, Denis CV, Lenting PJ (2015) Of von Willebrand factor and platelets. Cell Mol Life Sci 72:307–326

    Article  CAS  PubMed  Google Scholar 

  4. Knöbl P (2014) Inherited and acquired thrombotic thrombocytopenic Purpura (TTP) in adults. Semin Thromb Hemost 40:493–502

    Article  PubMed  Google Scholar 

  5. Hassenpflug WA, Budde U, Schneppenheim S, Schneppenheim R (2014) Inherited thrombotic thrombocytopenic purpura in children. Semin Thromb Hemost 40:487–492

    Article  CAS  PubMed  Google Scholar 

  6. Vanhoorelbeke K, Cauwenberghs N, Vauterin S, Schlammadinger A, Mazurier C, Deckmyn H (2000) A reliable and reproducible ELISA method to measure ristocetin cofactor activity of von Willebrand factor. Thromb Haemost 83:107–113

    CAS  PubMed  Google Scholar 

  7. Vanhoorelbeke K, Cauwenberghs N, Vandecasteele G, Vauterin S, Deckmyn H (2002) A reliable von Willebrand factor: ristocetin cofactor enzyme-linked immunosorbent assay to differentiate between type 1 and type 2 von Willebrand disease. Semin Thromb Hemost 28:161–166

    Article  CAS  PubMed  Google Scholar 

  8. Federici AB, Canciani MT, Forza I, Mannucci PM, Marchese P, Ware J, Ruggeri ZM (2004) A sensitive ristocetin co-factor activity assay with recombinant glycoprotein Ibalpha for the diagnosis of patients with low von Willebrand factor levels. Haematologica 89:77–85

    CAS  PubMed  Google Scholar 

  9. Flood VH, Gill JC, Morateck PA, Christopherson PA, Friedman KD, Haberichter SL, Hoffmann RG, Montgomery RR (2011) Gain-of-function GPIb ELISA assay for VWF activity in the Zimmerman program for the molecular and clinical biology of VWD. Blood 117:67–74

    Article  Google Scholar 

  10. Stufano F, Baronciani L, Pagliari MT, Franchi F, Cozzi G, Garcia-Oya I, Bucciarelli P, Boscarino M, Peyvandi F (2015) Evaluation of an heterogeneous group of patients with von Willebrand disease using an assay alternative to ristocetin induced platelet agglutination. J Thromb Haemost 13:1806–1814

    Article  CAS  PubMed  Google Scholar 

  11. Stufano F, Lawrie AS, Marca SLA, Berbenni C, Baronciani L, Peyvandi F (2013) A two-centre comparative evaluation of new automated assays for von Willebrand factor ristocetin cofactor activity and antigen. Haemophilia 20:147–153

    Article  PubMed  Google Scholar 

  12. Stufano F, Lawrie AS, Marca SLA, Berbenni C, Baronciani L, Peyvandi F (2014) A two-centre comparative evaluation of new automated assays for von Willebrand factor ristocetin cofactor activity and antigen. Haemophilia 20:147–153

    Article  CAS  PubMed  Google Scholar 

  13. Timm A, Hillarp A, Philips M, Goetze JP (2015) Comparison of two automated von Willebrand factor activity assays. Thromb Res 135:684–691

    Article  CAS  PubMed  Google Scholar 

  14. Verfaille CJ, Witte ED, Devreese MJ (2013) Validation of a new panel of automated chemiluminescence assays for von Willebrand factor antigen and activity in the screening for von Willebrand disease. Int J Lab Hematol 35:555–565

    Article  Google Scholar 

  15. Cabrera N, Moret A, Caunedo P, Cid AR, Vila V, Espana F, Aznar JA (2013) Comparison of a new chemiluminescent immunoassay for von Willebrand factor activity with the ristocetin cofactor-induced platelet agglutination method. Haemophilia 19:920–925

    Article  CAS  PubMed  Google Scholar 

  16. Costa-Pinto J, Pérez-Rodríguez A, Del M, Goméz-del-Castillo C, Lourés E, Rodríguez-Trillo Á, Batlle J, López-Fernández MF (2014) Diagnosis of inherited von Willebrand disease: comparison of two methodologies and analysis of the discrepancies. Haemophilia 20:559–567

    Article  CAS  PubMed  Google Scholar 

  17. De Maistre E, Volot F, Mourey G, Aho LS, Ternisien C, Briquel ME, Bertrand MA et al (2014) Performance of two new automated assays for measuring von Willebrand activity: HemosIL AcuStar and Innovance. Thromb Haemost 112:825–830

    Article  PubMed  Google Scholar 

  18. Favaloro EJ, Mohammed S (2016) Evaluation of a von Willebrand factor three test panel and chemiluminescent-based assay system for identification of, and therapy monitoring in, von Willebrand disease. Thromb Res 141:202–211

    Article  CAS  PubMed  Google Scholar 

  19. Lawrie AS, Stufano F, Canciani MT, Mackie IJ, Machin SJ, Peyvandi F (2013) A comparative evaluation of a new automated assay for von Willebrand factor activity. Haemophilia 19:338–342

    Article  CAS  PubMed  Google Scholar 

  20. Graf L, Moffat KA, Carlino SA, Chan AKC, Iorio A, Giulivi A, Hayward CPM (2014) Evaluation of an automated method for measuring von Willebrand factor activity in clinical samples without ristocetin. Int J Lab Hematol 36:341–351

    Article  CAS  PubMed  Google Scholar 

  21. Geisen U, Zieger B, Nakamura L, Weis A, Heinz J, Michiels JJ, Heilmann C (2014) Comparison of von Willebrand factor (VWF) activity VWF:Ac with VWF ristocetin cofactor activity VWF:RCo. Thromb Res 134:246–250

    Article  CAS  PubMed  Google Scholar 

  22. Patzke J, Budde U, Huber A, Méndez A, Muth H, Obser T, Peerschke E, Wilkens M, Schneppenheim R (2014) Performance evaluation and multicentre study of a von Willebrand factor activity assay base don GPIb binding in the absence of ristocetin. Blood Coagul Fibrinolysis 25:860–870

    Article  CAS  PubMed  Google Scholar 

  23. Favaloro EJ, Mohammed S (2014) Towards improved diagnosis of von Willebrand disease: comparative evaluations of several automated von Willebrand factor antigen and activity assays. Thromb Res 134:1292–1300

    Article  CAS  PubMed  Google Scholar 

  24. CLSI (2008) Collection, transport, and processing of blood specimens for testing plasma-based coagulation assays and molecular hemostasis assays; approved guideline, 5th edn. CLSI document H21-A5. CLSI, Wayne, PA

    Google Scholar 

  25. Favaloro EJ, Bonar RA, Mohammed S, Arbelaez A, Niemann J, Freney R, Meiring M et al (2016) Type 2M von Willebrand disease – more often misidentified than correctly identified. Haemophilia 22:e145–e155

    Article  CAS  PubMed  Google Scholar 

  26. Favaloro EJ, Bonar RA, Meiring M, Duncan E, Mohammed S, Sioufi J, Marsden K (2014) Evaluating errors in the laboratory identification of von Willebrand disease in the real world. Thromb Res 134:393–403

    Article  CAS  PubMed  Google Scholar 

  27. Bolton-Maggs PHB, Favaloro EJ, Hillarp A, Jennings I, Kohler HP (2012) Difficulties and pitfalls in the laboratory diagnosis of bleeding disorders. Haemophilia 18:66–72

    Article  PubMed  Google Scholar 

  28. Lillicrap D (2013) Von Willebrand disease: advances in pathogenetic understanding, diagnosis, and therapy. Blood 122:254–260

    Google Scholar 

  29. Castaman G, Hillarp A, Goodeve A (2014) Laboratory aspects of von Willebrand disease: test repertoire and options of activity assays and genetic analysis. Haemophilia 20:65–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Favaloro EJ (2015) Recent advances in laboratory-aided diagnosis of von Willebrand disease. Expert Opin Orphan Drugs 3:975–995

    Article  Google Scholar 

  31. Bodó I, Eikenboom J, Montgomery R, Patzke J, Schneppenheim R, Di Paola J (2015) Platelet dependent von Willebrand factor activity. Nomenclature and methodology: communication from SSC of the ISTH. J Thromb Haemost 13:1345–1350

    Article  PubMed  Google Scholar 

  32. Favaloro EJ (2014) Diagnosing von Willebrand disease: a short history of laboratory milestones and innovations, plus current status, challenges, and solutions. Semin Thromb Hemost 40:551–570

    Article  CAS  PubMed  Google Scholar 

  33. Favaloro EJ, Pasalic L, Curnow J (2016) Laboratory tests used to help diagnose von Willebrand disease: an update. Pathology 48:303–318

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Patzke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Patzke, J., Favaloro, E.J. (2017). Laboratory Testing for von Willebrand Factor Activity by Glycoprotein Ib Binding Assays (VWF:GPIb). In: Favaloro, E., Lippi, G. (eds) Hemostasis and Thrombosis. Methods in Molecular Biology, vol 1646. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7196-1_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7196-1_33

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7194-7

  • Online ISBN: 978-1-4939-7196-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics