Skip to main content

Assessment of Platelet Function in Whole Blood by Flow Cytometry

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1646))

Abstract

Evaluation of platelet function is important for understanding the physiology of hemostasis and thrombosis and is utilized in clinical practice to diagnose inherited and acquired platelet bleeding disorders. Flow cytometry is a powerful tool for rapid evaluation of multiple functional properties of large number of platelets in whole blood and offers many advantages over other traditional methods. Attention to pre-analytical factors is required to ensure biologically valid and robust results.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bennett JS (2001) Platelet-fibrinogen interactions. Ann N Y Acad Sci 936(1):340–354. doi:10.1111/j.1749-6632.2001.tb03521.x

    Article  CAS  PubMed  Google Scholar 

  2. Sangkuhl K, Shuldiner AR, Klein TE, Altman RB (2011) Platelet aggregation pathway. Pharmacogenet Genomics 21((8)):516–521. 510.1097/FPC.1090b1013e3283406323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ferroni P, Vazzana N, Riondino S, Cuccurullo C, Guadagni F, Davi G (2012) Platelet function in health and disease: from molecular mechanisms, redox considerations to novel therapeutic opportunities. Antioxid Redox Signal 17(10):1447–1485. doi:10.1089/ars.2011.4324

    Article  CAS  PubMed  Google Scholar 

  4. White JG (2013) Platelet structure. In: Michelson AD (ed) Platelets, 3rd edn. Academic, Cambridge, MA, pp 117–144

    Chapter  Google Scholar 

  5. Jurk K, Kehrel BE (2005) Platelets: physiology and biochemistry. Semin Thromb Hemost 31(04):381–392. doi:10.1055/s-2005-916671

    Article  CAS  PubMed  Google Scholar 

  6. Jirouskova M, Shet AS, Johnson GJ (2007) A guide to murine platelet structure, function, assays, and genetic alterations. J Thromb Haemost 5(4):661–669. doi:10.1111/j.1538-7836.2007.02407.x

    Article  CAS  PubMed  Google Scholar 

  7. Ghasemzadeh M, Hosseini E (2013) Platelet-leukocyte crosstalk: linking proinflammatory responses to procoagulant state. Thromb Res 131(3):191–197

    Article  CAS  PubMed  Google Scholar 

  8. Bowen RA, Remaley AT (2014) Interferences from blood collection tube components on clinical chemistry assays. Biochem Med (Zagreb) 24((1)):31–44. doi:10.11613/bm.2014.006

    Article  CAS  Google Scholar 

  9. Harrison P, Mackie I, Mumford A, Briggs C, Liesner R, Winter M, Machin S, British Committee for Standards in H (2011) Guidelines for the laboratory investigation of heritable disorders of platelet function. Br J Haematol 155(1):30–44. doi:10.1111/j.1365-2141.2011.08793.x

    Article  CAS  PubMed  Google Scholar 

  10. Adcock Funk DM, Lippi G, Favaloro EJ (2012) Quality standards for sample processing, transportation, and storage in hemostasis testing. Semin Thromb Hemost 38(6):576–585. doi:10.1055/s-0032-1319768

    Article  CAS  PubMed  Google Scholar 

  11. Andreasen JB, Pistor-Riebold TU, Knudsen IH, Ravn HB, Hvas AM (2014) Evaluation of different sized blood sampling tubes for thromboelastometry, platelet function, and platelet count. Clin Chem Lab Med 52(5):701–706. doi:10.1515/cclm-2013-0836

    Article  CAS  PubMed  Google Scholar 

  12. Ahnadi CE, Sabrinah Chapman E, Lepine M, Okrongly D, Pujol-Moix N, Hernandez A, Boughrassa F, Grant AM (2003) Assessment of platelet activation in several different anticoagulants by the Advia 120 hematology system, fluorescence flow cytometry, and electron microscopy. Thromb Haemost 90(5):940–948. doi:10.1160/th03-02-0097

    CAS  PubMed  Google Scholar 

  13. Mann KG, Whelihan MF, Butenas S, Orfeo T (2007) Citrate anticoagulation and the dynamics of thrombin generation. J Thromb Haemost 5(10):2055–2061. doi:10.1111/j.1538-7836.2007.02710.x

    Article  CAS  PubMed  Google Scholar 

  14. Rink TJ, Sage SO (1990) Calcium signaling in human platelets. Annu Rev Physiol 52:431–449. doi:10.1146/annurev.ph.52.030190.002243

    Article  CAS  PubMed  Google Scholar 

  15. Wallén NH, Ladjevardi M, Albert J, Broijersen A (1997) Influence of different anticoagulants on platelet aggregation in whole blood; a comparison between citrate, low molecular mass heparin and hirudin. Thromb Res 87(1):151–157

    Article  PubMed  Google Scholar 

  16. Kaiser AF, Neubauer H, Franken CC, Kruger JC, Mugge A, Meves SH (2012) Which is the best anticoagulant for whole blood aggregometry platelet function testing? Comparison of six anticoagulants and diverse storage conditions. Platelets 23(5):359–367. doi:10.3109/09537104.2011.624211

    Article  CAS  PubMed  Google Scholar 

  17. Heemskerk JW, Feijge MA, Andree HA, Sage SO (1993) Function of intracellular [Ca2+]i in exocytosis and transbilayer movement in human platelets surface-labeled with the fluorescent probe 1-(4-trimethylammonio)phenyl-6-phenyl-1,3,5-hexatriene. Biochim Biophys Acta 1147(2):194–204

    Article  CAS  PubMed  Google Scholar 

  18. Pasquet JM, Dachary-Prigent J, Nurden AT (1996) Calcium influx is a determining factor of calpain activation and microparticle formation in platelets. Eur J Biochem 239(3):647–654

    Article  CAS  PubMed  Google Scholar 

  19. Hua VM, Abeynaike L, Glaros E, Campbell H, Pasalic L, Hogg PJ, Chen VM (2015) Necrotic platelets provide a procoagulant surface during thrombosis. Blood 126(26):2852–2862. doi:10.1182/blood-2015-08-663005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mann KG, Nesheim ME, Church WR, Haley P, Krishnaswamy S (1990) Surface-dependent reactions of the vitamin K-dependent enzyme complexes. Blood 76(1):1–16

    CAS  PubMed  Google Scholar 

  21. Munnix IC, Kuijpers MJ, Auger J, Thomassen CM, Panizzi P, van Zandvoort MA, Rosing J, Bock PE, Watson SP, Heemskerk JW (2007) Segregation of platelet aggregatory and procoagulant microdomains in thrombus formation: regulation by transient integrin activation. Arterioscler Thromb Vasc Biol 27(11):2484–2490. doi:10.1161/ATVBAHA.107.151100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Feinman RD, Detwiler TC (1974) Platelet secretion induced by divalent cation ionophores. Nature 249(453):172–173

    Article  CAS  PubMed  Google Scholar 

  23. Thiagarajan P, Tait JF (1990) Binding of annexin V/placental anticoagulant protein I to platelets. Evidence for phosphatidylserine exposure in the procoagulant response of activated platelets. J Biol Chem 265(29):17420–17423

    CAS  PubMed  Google Scholar 

  24. Reutelingsperger CP, Kop JM, Hornstra G, Hemker HC (1988) Purification and characterization of a novel protein from bovine aorta that inhibits coagulation. Inhibition of the phospholipid-dependent factor-Xa-catalyzed prothrombin activation, through a high-affinity binding of the anticoagulant to the phospholipids. Eur J Biochem 173(1):171–178

    Article  CAS  PubMed  Google Scholar 

  25. Andree HA, Reutelingsperger CP, Hauptmann R, Hemker HC, Hermens WT, Willems GM (1990) Binding of vascular anticoagulant alpha (VAC alpha) to planar phospholipid bilayers. J Biol Chem 265(9):4923–4928

    CAS  PubMed  Google Scholar 

  26. Laudano AP, Cottrell BA, Doolittle RF (1983) Synthetic peptides modeled on fibrin polymerization sites. Ann N Y Acad Sci 408:315–329

    Article  CAS  PubMed  Google Scholar 

  27. Laudano AP, Doolittle RF (1980) Studies on synthetic peptides that bind to fibrinogen and prevent fibrin polymerization. Structural requirements, number of binding sites, and species differences. Biochemistry (Mosc) 19(5):1013–1019. doi:10.1021/bi00546a028

    Article  CAS  Google Scholar 

  28. Kawasaki K, Hirase K, Miyano M, Tsuji T, Iwamoto M (1992) Amino acids and peptides. XVI. Synthesis of N-terminal tetrapeptide analogs of fibrin α-chain and their inhibitory effects on fibrinogen/thrombin clotting. Chem Pharm Bull (Tokyo) 40(12):3253–3260

    Article  CAS  Google Scholar 

  29. Michelson AD (1994) Platelet activation by thrombin can be directly measured in whole blood through the use of the peptide GPRP and flow cytometry: methods and clinical applications. Blood Coagul Fibrinolysis 5(1):121–131

    Article  CAS  PubMed  Google Scholar 

  30. Hagberg IA, Lyberg T (2000) Blood platelet activation evaluated by flow cytometry: optimised methods for clinical studies. Platelets 11(3):137–150

    Article  CAS  PubMed  Google Scholar 

  31. Ramstrom S, Sodergren AL, Tynngard N, Lindahl TL (2016) Platelet function determined by flow cytometry: new perspectives? Semin Thromb Hemost 42(3):268–281. doi:10.1055/s-0035-1570082

    Article  PubMed  Google Scholar 

  32. Schmitz G, Rothe G, Ruf A, Barlage S, Tschope D, Clemetson KJ, Goodall AH, Michelson AD, Nurden AT, Shankey TV (1998) European working group on clinical cell analysis: consensus protocol for the flow cytometric characterisation of platelet function. Thromb Haemost 79(5):885–896

    CAS  PubMed  Google Scholar 

  33. Geddis AE (2013) Inherited thrombocytopenias: an approach to diagnosis and management. Int J Lab Hematol 35(1):14–25. doi:10.1111/j.1751-553X.2012.01454.x

    Article  CAS  PubMed  Google Scholar 

  34. Israels SJ, El-Ekiaby M, Quiroga T, Mezzano D (2010) Inherited disorders of platelet function and challenges to diagnosis of mucocutaneous bleeding. Haemophilia 16(Suppl 5):152–159. doi:10.1111/j.1365-2516.2010.02314.x

    Article  CAS  PubMed  Google Scholar 

  35. Da Prada M, Pletscher A (1975) Accumulation of basic drugs in 5-hydroxytryptamine storage organelles of rabbit blood platelets. Eur J Pharmacol 32(02):179–185

    Article  PubMed  Google Scholar 

  36. Lorez HP, Da Prada M, Rendu F, Pletscher A (1977) Mepacrine, a tool for investigating the 5-hydroxytryptamine organelles of blood platelets by fluorescence microscopy. J Lab Clin Med 89(1):200–206

    CAS  PubMed  Google Scholar 

  37. Gordon N, Thom J, Cole C, Baker R (1995) Rapid detection of hereditary and acquired platelet storage pool deficiency by flow cytometry. Br J Haematol 89(1):117–123

    Article  CAS  PubMed  Google Scholar 

  38. Wall JE, Buijs-Wilts M, Arnold JT, Wang W, White MM, Jennings LK, Jackson CW (1995) A flow cytometric assay using mepacrine for study of uptake and release of platelet dense granule contents. Br J Haematol 89(2):380–385

    Article  CAS  PubMed  Google Scholar 

  39. Ramstrom AS, Fagerberg IH, Lindahl TL (1999) A flow cytometric assay for the study of dense granule storage and release in human platelets. Platelets 10(2–3):153–158. doi:10.1080/09537109976239

    Article  CAS  PubMed  Google Scholar 

  40. Shattil SJ, Hoxie JA, Cunningham M, Brass LF (1985) Changes in the platelet membrane glycoprotein IIb.IIIa complex during platelet activation. J Biol Chem 260(20):11107–11114

    CAS  PubMed  Google Scholar 

  41. Ginsberg MH, Frelinger AL, Lam SC, Forsyth J, McMillan R, Plow EF, Shattil SJ (1990) Analysis of platelet aggregation disorders based on flow cytometric analysis of membrane glycoprotein IIb-IIIa with conformation-specific monoclonal antibodies. Blood 76(10):2017–2023

    CAS  PubMed  Google Scholar 

  42. Frelinger AL 3rd, Cohen I, Plow EF, Smith MA, Roberts J, Lam SC, Ginsberg MH (1990) Selective inhibition of integrin function by antibodies specific for ligand-occupied receptor conformers. J Biol Chem 265(11):6346–6352

    CAS  PubMed  Google Scholar 

  43. Frelinger AL 3rd, Lam SC, Plow EF, Smith MA, Loftus JC, Ginsberg MH (1988) Occupancy of an adhesive glycoprotein receptor modulates expression of an antigenic site involved in cell adhesion. J Biol Chem 263(25):12397–12402

    CAS  PubMed  Google Scholar 

  44. Abrams CS, Ellison N, Budzynski AZ, Shattil SJ (1990) Direct detection of activated platelets and platelet-derived microparticles in humans. Blood 75(1):128–138

    CAS  PubMed  Google Scholar 

  45. Gralnick HR, Williams SB, McKeown L, Shafer B, Connaghan GD, Hansmann K, Vail M, Magruder L (1992) Endogenous platelet fibrinogen: its modulation after surface expression is related to size-selective access to and conformational changes in the bound fibrinogen. Br J Haematol 80(3):347–357

    Article  CAS  PubMed  Google Scholar 

  46. Zamarron C, Ginsberg MH, Plow EF (1990) Monoclonal antibodies specific for a conformationally altered state of fibrinogen. Thromb Haemost 64(1):41–46

    CAS  PubMed  Google Scholar 

  47. Evangelista V, Smyth SS (2013) Interactions between platelets, leukocytes and the endothelium. In: Platelets, 3rd edn. Academic Press, 312, p 295

    Chapter  Google Scholar 

  48. Massaguer A, Engel P, Perez-del-Pulgar S, Bosch J, Pizcueta P (2000) Production and characterization of monoclonal antibodies against conserved epitopes of P-selectin (CD62P). Tissue Antigens 56(2):117–128

    Article  CAS  PubMed  Google Scholar 

  49. Nieuwenhuis HK, van Oosterhout JJ, Rozemuller E, van Iwaarden F, Sixma JJ (1987) Studies with a monoclonal antibody against activated platelets: evidence that a secreted 53,000-molecular weight lysosome-like granule protein is exposed on the surface of activated platelets in the circulation. Blood 70(3):838–845

    CAS  PubMed  Google Scholar 

  50. Furie B, Furie BC, Flaumenhaft R (2001) A journey with platelet P-selectin: the molecular basis of granule secretion, signalling and cell adhesion. Thromb Haemost 86(1):214–221

    CAS  PubMed  Google Scholar 

  51. Berny-Lang MA, Frelinger AL III, Barnard MR, Michelson AD (2013) Flow cytometry. In: Michelson AD (ed) Platelets, 3rd edn. Academic Press, San Diego, pp 581–602

    Chapter  Google Scholar 

  52. Sako D, Chang XJ, Barone KM, Vachino G, White HM, Shaw G, Veldman GM, Bean KM, Ahern TJ, Furie B et al (1993) Expression cloning of a functional glycoprotein ligand for P-selectin. Cell 75(6):1179–1186

    Article  CAS  PubMed  Google Scholar 

  53. McEver RP, Cummings RD (1997) Perspectives series: cell adhesion in vascular biology. Role of PSGL-1 binding to selectins in leukocyte recruitment. J Clin Invest 100(3):485–491. doi:10.1172/jci119556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. De Gaetano G, Cerletti C, Evangelista V (1999) Recent advances in platelet-polymorphonuclear leukocyte interaction. Haemostasis 29(1):41–49

    PubMed  Google Scholar 

  55. Maugeri N, Baldini M, Ramirez GA, Rovere-Querini P, Manfredi AA (2012) Platelet-leukocyte deregulated interactions foster sterile inflammation and tissue damage in immune-mediated vessel diseases. Thromb Res 129(3):267–273. doi:10.1016/j.thromres.2011.12.001

    Article  CAS  PubMed  Google Scholar 

  56. Falati S, Liu Q, Gross P, Merrill-Skoloff G, Chou J, Vandendries E, Celi A, Croce K, Furie BC, Furie B (2003) Accumulation of tissue factor into developing thrombi in vivo is dependent upon microparticle P-selectin glycoprotein ligand 1 and platelet P-selectin. J Exp Med 197(11):1585–1598. doi:10.1084/jem.20021868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Owens AP, MacKman N (2011) Microparticles in hemostasis and thrombosis. Circ Res 108(10):1284–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Aatonen M, Gronholm M, Siljander PR (2012) Platelet-derived microvesicles: multitalented participants in intercellular communication. Semin Thromb Hemost 38(1):102–113. doi:10.1055/s-0031-1300956

    Article  CAS  PubMed  Google Scholar 

  59. Brill A, Fuchs TA, Savchenko AS, Thomas GM, Martinod K, De Meyer SF, Bhandari AA, Wagner DD (2012) Neutrophil extracellular traps promote deep vein thrombosis in mice. J Thromb Haemost 10(1):136–144. doi:10.1111/j.1538-7836.2011.04544.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Klinkhardt U, Bauersachs R, Adams J, Graff J, Lindhoff-Last E, Harder S (2003) Clopidogrel but not aspirin reduces P-selectin expression and formation of platelet-leukocyte aggregates in patients with atherosclerotic vascular disease. Clin Pharmacol Ther 73(3):232–241. doi:10.1067/mcp.2003.13

    Article  CAS  PubMed  Google Scholar 

  61. Baldini M, Manfredi AA, Maugeri N (2014) Targeting platelet-neutrophil interactions in giant-cell arteritis. Curr Pharm Des 20(4):567–574

    Article  CAS  PubMed  Google Scholar 

  62. Totani L, Dell'Elba G, Martelli N, di Santo A, Piccoli A, Amore C, Evangelista V (2012) Prasugrel inhibits platelet-leukocyte interaction and reduces inflammatory markers in a model of endotoxic shock in the mouse. Thromb Haemost 107(6):1130–1140

    Article  CAS  PubMed  Google Scholar 

  63. Rahman M, Roller J, Zhang S, Syk I, Menger M, Jeppsson B, Thorlacius H (2012) Metalloproteinases regulate CD40L shedding from platelets and pulmonary recruitment of neutrophils in abdominal sepsis. Inflamm Res 61(6):571–579. doi:10.1007/s00011-012-0446-6

    Article  CAS  PubMed  Google Scholar 

  64. Rahman M, Zhang S, Chew M, Ersson A, Jeppsson B, Thorlacius H (2009) Platelet-derived CD40L (CD154) mediates neutrophil upregulation of mac-1 and recruitment in septic lung injury. Ann Surg 250(5):783–790. doi:10.1097/SLA.0b013e3181bd95b7

    Article  PubMed  Google Scholar 

  65. Asaduzzaman M, Lavasani S, Rahman M, Zhang S, Braun OO, Jeppsson B, Thorlacius H (2009) Platelets support pulmonary recruitment of neutrophils in abdominal sepsis. Crit Care Med 37(4):1389–1396. doi:10.1097/CCM.0b013e31819ceb71

    Article  PubMed  Google Scholar 

  66. Michelson AD, Barnard MR, Krueger LA, Valeri CR, Furman MI (2001) Circulating monocyte-platelet aggregates are a more sensitive marker of in vivo platelet activation than platelet surface P-selectin: studies in baboons, human coronary intervention, and human acute myocardial infarction. Circulation 104(13):1533–1537

    Article  CAS  PubMed  Google Scholar 

  67. Diamond SL, Purvis J, Chatterjee M, Flamm MH (2013) Systems biology of platelet-vessel wall interactions. Front Physiol 4:229. doi:10.3389/fphys.2013.00229

    Article  PubMed  PubMed Central  Google Scholar 

  68. Dachary-Prigent J, Pasquet JM, Freyssinet JM, Nurden AT (1995) Calcium involvement in aminophospholipid exposure and microparticle formation during platelet activation: a study using Ca2+−ATPase inhibitors. Biochemistry (Mosc) 34(36):11625–11634

    Article  CAS  Google Scholar 

  69. Assinger A, Volf I, Schmid D (2015) A novel, rapid method to quantify intraplatelet calcium dynamics by ratiometric flow cytometry. PLoS One 10(4):e0122527. doi:10.1371/journal.pone.0122527

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Davies TA, Drotts D, Weil GJ, Simons ER (1988) Flow cytometric measurements of cytoplasmic calcium changes in human platelets. Cytometry 9(2):138–142. doi:10.1002/cyto.990090207

    Article  CAS  PubMed  Google Scholar 

  71. Alshehri OM, Hughes CE, Montague S, Watson SK, Frampton J, Bender M, Watson SP (2015) Fibrin activates GPVI in human and mouse platelets. Blood 126(13):1601–1608. doi:10.1182/blood-2015-04-641654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Swieringa F, Kuijpers MJ, Heemskerk JW, van der Meijden PE (2014) Targeting platelet receptor function in thrombus formation: the risk of bleeding. Blood Rev 28(1):9–21. doi:10.1016/j.blre.2013.12.001

    Article  CAS  PubMed  Google Scholar 

  73. Hoffman M, Monroe DM 3rd (2001) A cell-based model of hemostasis. Thromb Haemost 85(6):958–965

    CAS  PubMed  Google Scholar 

  74. Monroe DM, Hoffman M (2006) What does it take to make the perfect clot? Arterioscler Thromb Vasc Biol 26(1):41–48. doi:10.1161/01.atv.0000193624.28251.83

    Article  CAS  PubMed  Google Scholar 

  75. Monroe DM, Hoffman M, Roberts HR (2002) Platelets and thrombin generation. Arterioscler Thromb Vasc Biol 22(9):1381–1389. doi:10.1161/01.atv.0000031340.68494.34

    Article  CAS  PubMed  Google Scholar 

  76. Heemskerk JWM, Mattheij NJA, Cosemans JMEM (2013) Platelet-based coagulation: different populations, different functions. J Thromb Haemost 11(1):2–16. doi:10.1111/jth.12045

    Article  CAS  PubMed  Google Scholar 

  77. Dachary-Prigent J, Freyssinet JM, Pasquet JM, Carron JC, Nurden AT (1993) Annexin V as a probe of aminophospholipid exposure and platelet membrane vesiculation: a flow cytometry study showing a role for free sulfhydryl groups. Blood 81(10):2554–2565

    CAS  PubMed  Google Scholar 

  78. Albanyan AM, Murphy MF, Rasmussen JT, Heegaard CW, Harrison P (2009) Measurement of phosphatidylserine exposure during storage of platelet concentrates using the novel probe lactadherin: a comparison study with annexin V. Transfusion (Paris) 49(1):99–107. doi:10.1111/j.1537-2995.2008.01933.x

    Article  Google Scholar 

  79. Dasgupta SK, Guchhait P, Thiagarajan P (2006) Lactadherin binding and phosphatidylserine expression on cell surface-comparison with annexin A5. Transl Res 148(1):19–25. doi:10.1016/j.lab.2006.03.006

    Article  CAS  PubMed  Google Scholar 

  80. Shi J, Heegaard CW, Rasmussen JT, Gilbert GE (2004) Lactadherin binds selectively to membranes containing phosphatidyl-L-serine and increased curvature. Biochim Biophys Acta 1667(1):82–90. doi:10.1016/j.bbamem.2004.09.006

    Article  CAS  PubMed  Google Scholar 

  81. Furman MI, Krueger LA, Frelinger AL, Barnard MR, Mascelli MA, Nakada MT, Michelson AD (2000) GPIIb-IIIa antagonist-induced reduction in platelet surface factor V/Va binding and phosphatidylserine expression in whole blood. Thromb Haemost 84(3):492–498

    CAS  PubMed  Google Scholar 

  82. Sims PJ, Faioni EM, Wiedmer T, Shattil SJ (1988) Complement proteins C5b-9 cause release of membrane vesicles from the platelet surface that are enriched in the membrane receptor for coagulation factor Va and express prothrombinase activity. J Biol Chem 263(34):18205–18212

    CAS  PubMed  Google Scholar 

  83. Gilbert GE, Sims PJ, Wiedmer T, Furie B, Furie BC, Shattil SJ (1991) Platelet-derived microparticles express high affinity receptors for factor VIII. J Biol Chem 266(26):17261–17268

    CAS  PubMed  Google Scholar 

  84. Holme PA, Brosstad F, Solum NO (1995) Platelet-derived microvesicles and activated platelets express factor Xa activity. Blood Coagul Fibrinolysis 6(4):302–310

    Article  CAS  PubMed  Google Scholar 

  85. Kempton CL, Hoffman M, Roberts HR, Monroe DM (2005) Platelet heterogeneity: variation in coagulation complexes on platelet subpopulations. Arterioscler Thromb Vasc Biol 25(4):861–866. doi:10.1161/01.ATV.0000155987.26583.9b

    Article  CAS  PubMed  Google Scholar 

  86. Ramstrom S, Ranby M, Lindahl TL (2003) Platelet phosphatidylserine exposure and procoagulant activity in clotting whole blood--different effects of collagen, TRAP and calcium ionophore A23187. Thromb Haemost 89(1):132–141. doi:10.1267/thro03010132

    CAS  PubMed  Google Scholar 

  87. McFadyen JD, Jackson SP (2013) Differentiating haemostasis from thrombosis for therapeutic benefit. Thromb Haemost 110(11):859–867. doi:10.1160/TH13-05-0379

    Article  CAS  PubMed  Google Scholar 

  88. Jobe SM, Wilson KM, Leo L, Raimondi A, Molkentin JD, Lentz SR, Di Paola J (2008) Critical role for the mitochondrial permeability transition pore and cyclophilin D in platelet activation and thrombosis. Blood 111(3):1257–1265. doi:10.1182/blood-2007-05-092684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Schoenwaelder SM, Yuan Y, Josefsson EC, White MJ, Yao Y, Mason KD, O'Reilly LA, Henley KJ, Ono A, Hsiao S, Willcox A, Roberts AW, Huang DC, Salem HH, Kile BT, Jackson SP (2009) Two distinct pathways regulate platelet phosphatidylserine exposure and procoagulant function. Blood 114(3):663–666. doi:10.1182/blood-2009-01-200345

    Article  CAS  PubMed  Google Scholar 

  90. Farndale RW, Siljander PRM (2003) Collagen-induced platelet activation. In: Arnout J, De Gaetano G, Hoylaerts M, Peerlinck K, Van Geet C, Verhaeghe R (eds) Thrombosis: fundamental and clinical aspects. Leuven University Press, Leuven, Belgium, pp 49–74

    Google Scholar 

  91. Shattil SJ, Cunningham M, Hoxie JA (1987) Detection of activated platelets in whole blood using activation-dependent monoclonal antibodies and flow cytometry. Blood 70(1):307–315

    CAS  PubMed  Google Scholar 

  92. Herzenberg LA, Tung J, Moore WA, Herzenberg LA, Parks DR (2006) Interpreting flow cytometry data: a guide for the perplexed. Nat Immunol 7(7):681–685. doi:10.1038/ni0706-681

    Article  CAS  PubMed  Google Scholar 

  93. Lacroix R, Robert S, Poncelet P, Dignat-George F (2010) Overcoming limitations of microparticle measurement by flow cytometry. Semin Thromb Hemost 36(8):807–818. doi:10.1055/s-0030-1267034

    Article  PubMed  Google Scholar 

  94. Sodergren AL, Tynngard N, Berlin G, Ramstrom S (2016) Responsiveness of platelets during storage studied with flow cytometry--formation of platelet subpopulations and LAMP-1 as new markers for the platelet storage lesion. Vox Sang 110(2):116–125. doi:10.1111/vox.12324

    Article  CAS  PubMed  Google Scholar 

  95. Hulspas R, O'Gorman MR, Wood BL, Gratama JW, Sutherland DR (2009) Considerations for the control of background fluorescence in clinical flow cytometry. Cytometry B Clin Cytom 76(6):355–364. doi:10.1002/cyto.b.20485

    Article  PubMed  CAS  Google Scholar 

  96. Maecker HT, Trotter J (2006) Flow cytometry controls, instrument setup, and the determination of positivity. Cytometry A 69(9):1037–1042. doi:10.1002/cyto.a.20333

    Article  PubMed  Google Scholar 

  97. Knapp W, Dorken B, Gilks WR, Rieber EP, Schmidt RE, Stein H (eds) (1989) Leukocyte typing IV: white cell differentiation antigens, 4th edn. Oxford University Press, Oxford, UK

    Google Scholar 

  98. Mason DY, Andre P, Bensussan A (eds) (2002) Leucocyte typing VII: White cell differentiation antigens. Oxford University Press, New York

    Google Scholar 

  99. Vaporciyan AA, DeLisser HM, Yan HC, Mendiguren II, Thom SR, Jones ML, Ward PA, Albelda SM (1993) Involvement of platelet-endothelial cell adhesion molecule-1 in neutrophil recruitment in vivo. Science 262(5139):1580–1582

    Article  CAS  PubMed  Google Scholar 

  100. DeLisser HM, Newman PJ, Albelda SM (1993) Platelet endothelial cell adhesion molecule (CD31). Curr Top Microbiol Immunol 184:37–45

    CAS  PubMed  Google Scholar 

  101. Beltrame MP, Malvezzi M, Zanis J, Pasquini R (2009) Flow cytometry as a tool in the diagnosis of Bernard-Soulier syndrome in Brazilian patients. Platelets 20(4):229–234. doi:10.1080/09537100902893784

    Article  CAS  PubMed  Google Scholar 

  102. Faraday N, Goldschmidt-Clermont P, Dise K, Bray PF (1994) Quantitation of soluble fibrinogen binding to platelets by fluorescence-activated flow cytometry. J Lab Clin Med 123(5):728–740

    CAS  PubMed  Google Scholar 

  103. Heilmann E, Hynes LA, Burstein SA, George JN, Dale GL (1994) Fluorescein derivatization of fibrinogen for flow cytometric analysis of fibrinogen binding to platelets. Cytometry 17(4):287–293. doi:10.1002/cyto.990170403

    Article  CAS  PubMed  Google Scholar 

  104. Schoolmeester A, Vanhoorelbeke K, Katsutani S, Depraetere H, Feys HB, Heemskerk JM, Hoylaerts MF, Deckmyn H (2004) Monoclonal antibody IAC-1 is specific for activated alpha2beta1 and binds to amino acids 199 to 201 of the integrin alpha2 I-domain. Blood 104(2):390–396. doi:10.1182/blood-2003-12-4224

    Article  CAS  PubMed  Google Scholar 

  105. Carmody MW, Ault KA, Mitchell JG, Rote NS, Ng AK (1990) Production of monoclonal antibodies specific for platelet activation antigens and their use in evaluating platelet function. Hybridoma 9(6):631–641

    Article  CAS  PubMed  Google Scholar 

  106. Larsen E, Celi A, Gilbert GE, Furie BC, Erban JK, Bonfanti R, Wagner DD, Furie B (1989) PADGEM protein: a receptor that mediates the interaction of activated platelets with neutrophils and monocytes. Cell 59(2):305–312

    Article  CAS  PubMed  Google Scholar 

  107. Stenberg PE, McEver RP, Shuman MA, Jacques YV, Bainton DF (1985) A platelet alpha-granule membrane protein (GMP-140) is expressed on the plasma membrane after activation. J Cell Biol 101(3):880–886

    Article  CAS  PubMed  Google Scholar 

  108. Henn V, Slupsky JR, Grafe M, Anagnostopoulos I, Forster R, Muller-Berghaus G, Kroczek RA (1998) CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 391(6667):591–594. doi:10.1038/35393

    Article  CAS  PubMed  Google Scholar 

  109. Damas C, Vink T, Nieuwenhuis HK, Sixma JJ (2001) The 33-kDa platelet alpha-granule membrane protein (GMP-33) is an N-terminal proteolytic fragment of thrombospondin. Thromb Haemost 86(3):887–893

    CAS  PubMed  Google Scholar 

  110. Metzelaar MJ, Heijnen HF, Sixma JJ, Nieuwenhuis HK (1992) Identification of a 33-Kd protein associated with the alpha-granule membrane (GMP-33) that is expressed on the surface of activated platelets. Blood 79(2):372–379

    CAS  PubMed  Google Scholar 

  111. Aiken ML, Ginsberg MH, Plow EF (1987) Mechanisms for expression of thrombospondin on the platelet cell surface. Semin Thromb Hemost 13(3):307–316. doi:10.1055/s-2007-1003506

    Article  CAS  PubMed  Google Scholar 

  112. Boukerche H, McGregor JL (1988) Characterization of an anti-thrombospondin monoclonal antibody (P8) that inhibits human blood platelet functions. Normal binding of P8 to thrombin-activated Glanzmann thrombasthenic platelets. Eur J Biochem 171(1–2):383–392

    Article  CAS  PubMed  Google Scholar 

  113. Hayward CP, Furmaniak-Kazmierczak E, Cieutat AM, Moore JC, Bainton DF, Nesheim ME, Kelton JG, Cote G (1995) Factor V is complexed with multimerin in resting platelet lysates and colocalizes with multimerin in platelet alpha-granules. J Biol Chem 270(33):19217–19224

    Article  CAS  PubMed  Google Scholar 

  114. Hayward CP, Smith JW, Horsewood P, Warkentin TE, Kelton JG (1991) P-155, a multimeric platelet protein that is expressed on activated platelets. J Biol Chem 266(11):7114–7120

    CAS  PubMed  Google Scholar 

  115. Wall J, Buijs-Wilts M, Arnold J, Wang W, White M, Jennings LK, Jackson C (1985) A flow cytometric assay using mepacrine for study of uptake and release of platelet dense granule contents. Br J Haematol 89:380–385

    Article  Google Scholar 

  116. Ramström AS, Fagerberg IH, Lindahl TL (1999) A flow cytometric assay for the study of dense granule storage and release in human platelets. Platelets 10:153–158

    Article  PubMed  Google Scholar 

  117. Israels SJ, McMillan EM, Robertson C, Singhory S, McNicol A (1996) The lysosomal granule membrane protein, LAMP-2, is also present in platelet dense granule membranes. Thromb Haemost 75(4):623–629

    CAS  PubMed  Google Scholar 

  118. Febbraio M, Silverstein RL (1990) Identification and characterization of LAMP-1 as an activation-dependent platelet surface glycoprotein. J Biol Chem 265(30):18531–18537

    CAS  PubMed  Google Scholar 

  119. Sodergren AL, Svensson Holm AC, Ramstrom S, Lindstrom EG, Grenegard M, Ollinger K (2016) Thrombin-induced lysosomal exocytosis in human platelets is dependent on secondary activation by ADP and regulated by endothelial-derived substances. Platelets 27(1):86–92. doi:10.3109/09537104.2015.1042446

    Article  PubMed  CAS  Google Scholar 

  120. Silverstein RL, Febbraio M (1992) Identification of lysosome-associated membrane protein-2 as an activation-dependent platelet surface glycoprotein. Blood 80(6):1470–1475

    CAS  PubMed  Google Scholar 

  121. Kehrel B, Wierwille S, Clemetson KJ, Anders O, Steiner M, Knight CG, Farndale RW, Okuma M, Barnes MJ (1998) Glycoprotein VI is a major collagen receptor for platelet activation: it recognizes the platelet-activating quaternary structure of collagen, whereas CD36, glycoprotein IIb/IIIa, and von Willebrand factor do not. Blood 91(2):491–499

    CAS  PubMed  Google Scholar 

  122. Hechler B, Gachet C (2015) Purinergic receptors in thrombosis and inflammation. Arterioscler Thromb Vasc Biol 35(11):2307–2315. doi:10.1161/atvbaha.115.303395

    Article  CAS  PubMed  Google Scholar 

  123. Moschonas IC, Goudevenos JA, Tselepis AD (2015) Protease-activated receptor-1 antagonists in long-term antiplatelet therapy. Current state of evidence and future perspectives. Int J Cardiol 185:9–18. doi:10.1016/j.ijcard.2015.03.049

    Article  CAS  PubMed  Google Scholar 

  124. Keuren JF, Wielders SJ, Ulrichts H, Hackeng T, Heemskerk JW, Deckmyn H, Bevers EM, Lindhout T (2005) Synergistic effect of thrombin on collagen-induced platelet procoagulant activity is mediated through protease-activated receptor-1. Arterioscler Thromb Vasc Biol 25(7):1499–1505. doi:10.1161/01.ATV.0000167526.31611.f6

    Article  CAS  PubMed  Google Scholar 

  125. Morton LF, Hargreaves PG, Farndale RW, Young RD, Barnes MJ (1995) Integrin alpha 2 beta 1-independent activation of platelets by simple collagen-like peptides: collagen tertiary (triple-helical) and quaternary (polymeric) structures are sufficient alone for alpha 2 beta 1-independent platelet reactivity. Biochem J 306(Pt 2):337–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Polgar J, Clemetson JM, Kehrel BE, Wiedemann M, Magnenat EM, Wells TN, Clemetson KJ (1997) Platelet activation and signal transduction by convulxin, a C-type lectin from Crotalus durissus terrificus (tropical rattlesnake) venom via the p62/GPVI collagen receptor. J Biol Chem 272(21):13576–13583

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author would like to thank Dr. Gabrielle Pennings from ANZAC Research Institute, at the University of Sydney, Sydney, for the helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Pasalic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Pasalic, L. (2017). Assessment of Platelet Function in Whole Blood by Flow Cytometry. In: Favaloro, E., Lippi, G. (eds) Hemostasis and Thrombosis. Methods in Molecular Biology, vol 1646. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7196-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7196-1_27

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7194-7

  • Online ISBN: 978-1-4939-7196-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics