Skip to main content

The Fast-Halo Assay for the Detection of DNA Damage

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1644))

Abstract

The need for express screening of the DNA damaging potential of chemicals has progressively increased over the past 20 years due to the wide number of new synthetic molecules to be evaluated, as well as the adoption of more stringent chemical regulations such as the EU REACH and risk reduction politics. In this regard, DNA diffusion assays such as the microelectrophoretic comet assay paved the way for rapid genotoxicity testing. A more significant simplification and speeding up of the experimental processes was achieved with the fast halo assay (FHA) described in the present chapter. FHA operates at the single cell level and relies on radial dispersion of the fragments of damaged DNA from intact nuclear DNA. The fragmented DNA is separated by diffusion in an alkaline solvent and is stained, visualized, and finally quantified using computer-assisted image analysis programs. This permits the rapid assessment of the extent of DNA breakage caused by different types of DNA lesions. FHA has proven to be sensitive, reliable, and flexible. This is currently one of the simplest, cheapest, and quickest assays for studying DNA damage and repair in living cells. It does not need expensive reagents or electrophoretic equipment and requires only 40 min to prepare samples for computer-based quantification. This technique can be particularly useful in rapid genotoxicity assessments and in high-throughput genotoxicity screenings.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Moustacchi E (2000) DNA damage and repair: consequences on dose-responses. Mutat Res 464:35–40

    Article  CAS  PubMed  Google Scholar 

  2. Erixon K, Ahnstrom G (1979) Single-strand breaks in DNA during repair of UV-induced damage in normal human and xeroderma pigmentosum cells as determined by alkaline DNA unwinding and hydroxylapatite chromatography: effects of hydroxyurea, 5-fluorodeoxyuridine and 1-beta-D-arabinofuranosylcytosine on the kinetics of repair. Mutat Res 59:257–271

    Article  CAS  PubMed  Google Scholar 

  3. Furihata C, Matsushima T (1987) Use of in vivo/in vitro unscheduled DNA synthesis for identification of organ-specific carcinogens. Crit Rev Toxicol 17:245–277

    Article  CAS  PubMed  Google Scholar 

  4. Kohn KW, Grimek-Ewig RA (1973) Alkaline elution analysis, a new approach to the study of DNA single-strand interruptions in cells. Cancer Res 33:1849–1853

    CAS  PubMed  Google Scholar 

  5. Larsen KH, Brash D, Cleaver JE et al (1982) DNA repair assays as tests for environmental mutagens. A report of the U.S. EPA Gene-Tox program. Mutat Res 98:287–318

    Article  CAS  PubMed  Google Scholar 

  6. Ostling O, Johanson KJ (1984) Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochem Biophys Res Commun 123:291–298

    Article  CAS  PubMed  Google Scholar 

  7. Tice RR, Andrews PW, Singh NP (1990) The single cell gel assay: a sensitive technique for evaluating intercellular differences in DNA damage and repair. Basic Life Sci 53:291–301

    CAS  PubMed  Google Scholar 

  8. Sestili P, Cantoni O (1999) Osmotically driven radial diffusion of single-stranded DNA fragments on an agarose bed as a convenient measure of DNA strand scission. Free Radic Biol Med 26:1019–1026

    Article  CAS  PubMed  Google Scholar 

  9. Sestili P, Martinelli C, Stocchi V (2006) The fast halo assay: an improved method to quantify genomic DNA strand breakage at the single-cell level. Mutat Res 607:205–214

    Article  CAS  PubMed  Google Scholar 

  10. Bacso Z, Eliason JF (2001) Measurement of DNA damage associated with apoptosis by laser scanning cytometry. Cytometry 45:180–186

    Article  CAS  PubMed  Google Scholar 

  11. Brigotti M, Alfieri R, Sestili P et al (2002) Damage to nuclear DNA induced by Shiga toxin 1 and ricin in human endothelial cells. FASEB J 16:365–372

    Article  CAS  PubMed  Google Scholar 

  12. Brigotti M, Arfilli V, Carnicelli D et al (2013) Shiga toxin 1, as DNA repair inhibitor, synergistically potentiates the activity of the anticancer drug, mafosfamide, on raji cells. Toxins (Basel) 5:431–444

    Article  CAS  Google Scholar 

  13. Brigotti M, Carnicelli D, Ravanelli E et al (2007) Molecular damage and induction of proinflammatory cytokines in human endothelial cells exposed to Shiga toxin 1, Shiga toxin 2, and alpha-sarcin. Infect Immun 75:2201–2207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cantoni O, Guidarelli A (2008) Indirect mechanisms of DNA strand scission by peroxynitrite. Methods Enzymol 440:111–120

    Article  CAS  PubMed  Google Scholar 

  15. Chaudhary P, Shukla SK, Kumar IP et al (2006) Radioprotective properties of apple polyphenols: an in vitro study. Mol Cell Biochem 288:37–46

    Article  CAS  PubMed  Google Scholar 

  16. Chaudhary P, Shukla SK, Sharma RK (2011) REC-2006-a fractionated extract of Podophyllum hexandrum protects cellular DNA from radiation-induced damage by reducing the initial damage and enhancing its repair in vivo. Evid Based Complement Alternat Med 2011:473953

    Article  PubMed  PubMed Central  Google Scholar 

  17. Crimella C, Cantoni O, Guidarelli A et al (2011) A novel nonsense mutation in the APTX gene associated with delayed DNA single-strand break removal fails to enhance sensitivity to different genotoxic agents. Hum Mutat 32:E2118–E2133

    Article  PubMed  Google Scholar 

  18. Di Pietro A, Baluce B, Visalli G et al (2011) Ex vivo study for the assessment of behavioral factor and gene polymorphisms in individual susceptibility to oxidative DNA damage metals-induced. Int J Hyg Environ Health 214:210–218

    Article  PubMed  Google Scholar 

  19. Fimognari C, Turrini E, Sestili P et al (2014) Antileukemic activity of sulforaphane in primary blasts from patients affected by myelo- and lympho-proliferative disorders and in hypoxic conditions. PLoS One 9:e101991

    Article  PubMed  PubMed Central  Google Scholar 

  20. Galaz-Leiva S, Perez-Rodriguez G, Blazquez-Castro A, Stockert JC (2012) A simplified chromatin dispersion (nuclear halo) assay for detecting DNA breakage induced by ionizing radiation and chemical agents. Biotech Histochem 87:208–217

    Article  CAS  PubMed  Google Scholar 

  21. Garcia-Alonso FJ, Guidarelli A, Periago MJ (2007) Phenolic-rich juice prevents DNA single-strand breakage and cytotoxicity caused by tert-butylhydroperoxide in U937 cells: the role of iron chelation. J Nutr Biochem 18:457–466

    Article  CAS  PubMed  Google Scholar 

  22. Godard T, Deslandes E, Lebailly P et al (1999) Early detection of staurosporine-induced apoptosis by comet and annexin V assays. Histochem Cell Biol 112:155–161

    Article  CAS  PubMed  Google Scholar 

  23. Grasso S, Scifo C, Cardile V et al (2003) Adaptive responses to the stress induced by hyperthermia or hydrogen peroxide in human fibroblasts. Exp Biol Med (Maywood) 228:491–498

    Article  CAS  Google Scholar 

  24. Guidarelli A, Cerioni L, Cantoni O (2007) Inhibition of complex III promotes loss of Ca2+ dependence for mitochondrial superoxide formation and permeability transition evoked by peroxynitrite. J Cell Sci 120:1908–1914

    Article  CAS  PubMed  Google Scholar 

  25. Guidarelli A, Cerioni L, Fiorani M, Cantoni O (2009) Differentiation-associated loss of ryanodine receptors: a strategy adopted by monocytes/macrophages to prevent the DNA single-strand breakage induced by peroxynitrite. J Immunol 183:4449–4457

    Article  CAS  PubMed  Google Scholar 

  26. Guidarelli A, Cerioni L, Tommasini I et al (2005) Role of Bcl-2 in the arachidonate-mediated survival signaling preventing mitochondrial permeability transition-dependent U937 cell necrosis induced by peroxynitrite. Free Radic Biol Med 39:1638–1649

    Article  CAS  PubMed  Google Scholar 

  27. Guidarelli A, Clementi E, De Nadai C et al (2001) TNFalpha enhances the DNA single-strand breakage induced by the short-chain lipid hydroperoxide analogue tert-butylhydroperoxide via ceramide-dependent inhibition of complex III followed by enforced superoxide and hydrogen peroxide formation. Exp Cell Res 270:56–65

    Article  CAS  PubMed  Google Scholar 

  28. Guidarelli A, De Sanctis R, Cellini B et al (2001) Intracellular ascorbic acid enhances the DNA single-strand breakage and toxicity induced by peroxynitrite in U937 cells. Biochem J 356:509–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Guidarelli A, Palomba L, Cantoni O (2000) Peroxynitrite-mediated release of arachidonic acid from PC12 cells. Br J Pharmacol 129:1539–1541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Guidarelli A, Palomba L, Fiorani M, Cantoni O (2008) Susceptibility of rat astrocytes to DNA strand scission induced by activation of NADPH oxidase and collateral resistance to the effects of peroxynitrite. Free Radic Biol Med 45:521–529

    Article  CAS  PubMed  Google Scholar 

  31. Guidarelli A, Sciorati C, Clementi E, Cantoni O (2006) Peroxynitrite mobilizes calcium ions from ryanodine-sensitive stores, a process associated with the mitochondrial accumulation of the cation and the enforced formation of species mediating cleavage of genomic DNA. Free Radic Biol Med 41:154–164

    Article  CAS  PubMed  Google Scholar 

  32. Guidarelli A, Sestili P, Fiorani M, Cantoni O (2000) Arachidonic acid induces calcium-dependent mitochondrial formation of species promoting strand scission of genomic DNA. Free Radic Biol Med 28:1619–1627

    Article  CAS  PubMed  Google Scholar 

  33. Guidi C, Potenza L, Sestili P et al (2008) Differential effect of creatine on oxidatively-injured mitochondrial and nuclear DNA. Biochim Biophys Acta 1780:16–26

    Article  CAS  PubMed  Google Scholar 

  34. Kadioglu E, Sardas S, Erturk S et al (2009) Determination of DNA damage by alkaline halo and comet assay in patients under sevoflurane anesthesia. Toxicol Ind Health 25:205–212

    Article  CAS  PubMed  Google Scholar 

  35. Maurya DK (2014) HaloJ: an ImageJ program for semiautomatic quantification of DNA damage at single-cell level. Int J Toxicol 33:362–366

    Article  CAS  PubMed  Google Scholar 

  36. Meintieres S, Nesslany F, Pallardy M, Marzin D (2003) Detection of ghost cells in the standard alkaline comet assay is not a good measure of apoptosis. Environ Mol Mutagen 41:260–269

    Article  CAS  PubMed  Google Scholar 

  37. Mondal NK, Bhattacharya P, Ray MR (2011) Assessment of DNA damage by comet assay and fast halo assay in buccal epithelial cells of Indian women chronically exposed to biomass smoke. Int J Hyg Environ Health 214:311–318

    Article  CAS  PubMed  Google Scholar 

  38. Palomba L, Guidarelli A, Scovassi AI, Cantoni O (2001) Different effects of tert-butylhydroperoxide-induced peroxynitrite-dependent and -independent DNA single-strand breakage on PC12 cell poly(ADP-ribose) polymerase activity. Eur J Biochem 268:5223–5228

    Article  CAS  PubMed  Google Scholar 

  39. Potenza L, Martinelli C, Polidori E et al (2010) Effects of a 300 mT static magnetic field on human umbilical vein endothelial cells. Bioelectromagnetics 31:630–639

    Article  CAS  PubMed  Google Scholar 

  40. Qiao Y, An JC, Ma LY (2013) Single cell Array based assay for in vitro Genotoxicity study of nanomaterials. Anal Chem 85:4107–4112

    Article  CAS  PubMed  Google Scholar 

  41. Qiao Y, Ma LY (2013) Predicting efficacy of cancer cell killing under hypoxic conditions with single cell DNA damage assay. Anal Chem 85:6953–6957

    Article  CAS  PubMed  Google Scholar 

  42. Qiao Y, Ma LY (2013) Quantification of metal ion induced DNA damage with single cell array based assay. Analyst 138:5713–5718

    Article  CAS  PubMed  Google Scholar 

  43. Qiao Y, Wang C, Su M, Ma L (2012) Single cell DNA damage/repair assay using HaloChip. Anal Chem 84:1112–1116

    Article  CAS  PubMed  Google Scholar 

  44. Sestili P, Alfieri R, Carnicelli D et al (2005) Shiga toxin 1 and ricin inhibit the repair of H2O2-induced DNA single strand breaks in cultured mammalian cells. DNA Repair (Amst) 4:271–277

    Article  CAS  Google Scholar 

  45. Sestili P, Cantoni O, Cattabeni F, Murray D (1995) Evidence for separate mechanisms of cytotoxicity in mammalian cells treated with hydrogen peroxide in the absence or presence of L-histidine. Biochim Biophys Acta 1268:130–136

    Article  PubMed  Google Scholar 

  46. Sestili P, Cattabeni F, Cantoni O (1996) Direct excision of 50 kb pair DNA fragments from megabase-sized fragments produced during apoptotic cleavage of genomic DNA. FEBS Lett 396:337–342

    Article  CAS  PubMed  Google Scholar 

  47. Sestili P, Martinelli C, Ricci D et al (2007) Cytoprotective effect of preparations from various parts of Punica granatum L. fruits in oxidatively injured mammalian cells in comparison with their antioxidant capacity in cell free systems. Pharmacol Res 56:18–26

    Article  CAS  PubMed  Google Scholar 

  48. Sestili P, Paolillo M, Lenzi M et al (2010) Sulforaphane induces DNA single strand breaks in cultured human cells. Mutat Res 689:65–73

    Article  CAS  PubMed  Google Scholar 

  49. Shukla SK, Chaudhary P, Kumar IP et al (2006) Protection from radiation-induced mitochondrial and genomic DNA damage by an extract of Hippophae rhamnoides. Environ Mol Mutagen 47:647–656

    Article  CAS  PubMed  Google Scholar 

  50. Singh NP (2000) A simple method for accurate estimation of apoptotic cells. Exp Cell Res 256:328–337

    Article  CAS  PubMed  Google Scholar 

  51. Trivedi PP, Tripathi DN, Jena GB (2011) Hesperetin protects testicular toxicity of doxorubicin in rat: role of NFkappaB, p38 and caspase-3. Food Chem Toxicol 49:838–847

    Article  CAS  PubMed  Google Scholar 

  52. Vivek Kumar PR, Cheriyan VD, Seshadri M (2009) Could a strong alkali deproteinization replace the standard lysis step in alkaline single cell gel electrophoresis (comet) assay (pH>13)? Mutat Res 678:65–70

    Article  CAS  PubMed  Google Scholar 

  53. Vorob'eva N, Antonenko AV, Osipov AN (2011) Particularities of blood lymphocyte response to irradiation in vitro in breast cancer patients. Radiats Biol Radioecol 51:451–456

    PubMed  Google Scholar 

  54. Wright WD, Lagroye I, Zhang P et al (2001) Cytometric methods to analyze ionizing-radiation effects. Methods Cell Biol 64:251–268

    Article  CAS  PubMed  Google Scholar 

  55. Manvati S, Mangalhara KC, Kalaiarasan P et al (2014) MiR-101 induces senescence and prevents apoptosis in the background of DNA damage in MCF7 cells. PLoS One 9:e111177

    Article  PubMed  PubMed Central  Google Scholar 

  56. Smetanina NM, Pustovalova MV, Osipov AN (2013) Modified DNA-halo method for assessment of DNA damage induced by various genotoxic agents. Radiats Biol Radioecol 53:389–393

    CAS  PubMed  Google Scholar 

  57. Smetanina NM, Pustovalova MV, Osipov AN (2014) Effect of dimethyl sulfoxide on the extent of DNA single-strand breaks and alkali-labile sites induced by 365 nm UV-radiation in human blood lymphocyte nucleoids. Radiats Biol Radioecol 54:169–173

    CAS  PubMed  Google Scholar 

  58. Sultan A, Nesslany F, Violet M et al (2011) Nuclear tau, a key player in neuronal DNA protection. J Biol Chem 286:4566–4575

    Article  CAS  PubMed  Google Scholar 

  59. Grover IS, Kaur S (1999) Genotoxicity of wastewater samples from sewage and industrial effluent detected by the allium root anaphase aberration and micronucleus assays. Mutat Res 426:183–188

    Article  CAS  PubMed  Google Scholar 

  60. Cantoni O, Sestili P, Cattabeni F et al (1990) Comparative effects of doxorubicin and 4′-epi-doxorubicin on nucleic acid metabolism and cytotoxicity in a human tumor cell line. Cancer Chemother Pharmacol 27:47–51

    Article  CAS  PubMed  Google Scholar 

  61. Burattini S, Ferri P, Battistelli M et al (2009) Apoptotic DNA fragmentation can be revealed in situ: an ultrastructural approach. Microsc Res Tech 72:913–923

    Article  CAS  PubMed  Google Scholar 

  62. Gichner T, Mukherjee A, Wagner ED, Plewa MJ (2005) Evaluation of the nuclear DNA diffusion assay to detect apoptosis and necrosis. Mutat Res 586:38–46

    Article  CAS  PubMed  Google Scholar 

  63. Singh NP (2005) Apoptosis assessment by the DNA diffusion assay. Methods Mol Med 111:55–67

    CAS  PubMed  Google Scholar 

  64. Lunn G, Sansone EB (1987) Ethidium bromide: destruction and decontamination of solutions. Anal Biochem 162:453–458

    Article  CAS  PubMed  Google Scholar 

  65. Burlinson B et al (2007) Fourth International Workgroup on Genotoxicity testing: results of the in vivo Comet assay workgroup. Mutat Res 627:31–35

    Article  CAS  PubMed  Google Scholar 

  66. Ross GM, McMillan TJ, Wilcox P, Collins AR (1995) The single cell microgel electrophoresis assay (comet assay): technical aspects and applications. Report on the 5th LH Gray Trust workshop, Institute of Cancer Research, 1994. Mutat Res 337:57–60

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piero Sestili .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Sestili, P., Calcabrini, C., Diaz, A.R., Fimognari, C., Stocchi, V. (2017). The Fast-Halo Assay for the Detection of DNA Damage. In: Didenko, V. (eds) Fast Detection of DNA Damage. Methods in Molecular Biology, vol 1644. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7187-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7187-9_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7185-5

  • Online ISBN: 978-1-4939-7187-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics