Skip to main content

Ultrasound Imaging of DNA-Damage Effects in Live Cultured Cells and in Brain Tissue

  • Protocol
  • First Online:
Fast Detection of DNA Damage

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1644))

  • 1518 Accesses

Abstract

High-frequency ultrasound (>20 MHz) spectroscopy can be used to detect noninvasively DNA damage in cell samples in vitro, and in live tissue both ex vivo and in vivo. This chapter focuses on the former two aspects. Experimental evidence suggests that morphological changes that occur in cells undergoing apoptosis result in changes in frequency-dependent ultrasound backscatter. With advances in research, ultrasound spectroscopy is advancing the boundaries of fast, label-free, noninvasive DNA damage detection technology with potential use in personalized medicine and early therapy response monitoring. Depending on the desired resolution, parametric ultrasound images can be computed and displayed within minutes to hours after ultrasound examination for cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Czarnota GJ, Kolios MC, Abraham J et al (1999) Ultrasound imaging of apoptosis: high-resolution noninvasive monitoring of programmed cell death in vitro, in situ and in vivo. Br J Cancer 819(3):520–527

    Article  Google Scholar 

  2. Tunis AS, Czarnota GJ, Giles A, Sherar MD, Hunt JW, Kolios MC (2005) Monitoring structural changes in cells with high-frequency ultrasound signal statistics. Ultrasound Med Biol 31:1041–1049

    Article  CAS  PubMed  Google Scholar 

  3. Vlad RM, Alajez NM, Giles A, Kolios MC, Czarnota GJ (2008) Quantitative ultrasound characterization of cancer radiotherapy effects in vitro. Int J Radiat Oncol Biol Phys 72:1236–1243

    Article  PubMed  Google Scholar 

  4. Kolios MC, Czarnota GJ, Lee M, Hunt JW, Sherar MD (2002) Ultrasonic spectral parameter characterization of apoptosis. Ultrasound Med Biol 28:589–597

    Article  CAS  PubMed  Google Scholar 

  5. Banihashemi B, Vlad R, Debeljevic B, Giles A, Kolios MC, Czarnota GJ (2008) Ultrasound imaging of apoptosis in tumor response: novel preclinical monitoring of photodynamic therapy effects. Cancer Res 68:8590–8596

    Article  CAS  PubMed  Google Scholar 

  6. Vlad RM, Brand S, Giles A et al (2009) Quantitative ultrasound characterization of responses to radiotherapy in cancer mouse models. Clin Cancer Res 15(6):2067–2074

    Article  CAS  PubMed  Google Scholar 

  7. Sadeghi-Naini A, Falou O, Tadayyon H, Al-Mahrouki A, Tran W, Papanicolau N, Kolios MC, Czarnota GJ (2013) Conventional frequency ultrasonic biomarkers of cancer treatment response in vivo. Transl Oncol 6:234–243

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kim HC, Al-Mahrouki A, Gorjizadeh A, Sadeghi-Naini A, Karshafian R, Czarnota GJ (2014) Quantitative ultrasound characterization of tumor cell death: ultrasound-stimulated microbubbles for radiation enhancement. PLoS One 9:18–20

    Google Scholar 

  9. Foster FS, Pavlin CJ, Harasiewicz KA, Christopher DA, Turnbull DH (2000) Advances in ultrasound biomicroscopy. Ultrasound Med Biol 26:1–27

    Article  CAS  PubMed  Google Scholar 

  10. Foster FS, Zhang MY, Zhou YQ et al (2002) A new ultrasound instrument for in vivo microimaging of mice. Ultrasound Med Biol 28:1165–1172

    Article  CAS  PubMed  Google Scholar 

  11. Foster FS, Zhang M, Duckett AS, Cucevic V, Pavlin CJ (2003) In vivo imaging of embryonic development in the mouse eye by ultrasound biomicroscopy. Invest Ophthalmol Vis Sci 44:2361–2366

    Article  PubMed  Google Scholar 

  12. Graham KC, Wirtzfeld LA, MacKenzie LT, Postenka CO, Groom AC, MacDonald IC, Fenster A, Lacefield JC, Chambers AF (2005) Three-dimensional high-frequency ultrasound imaging for longitudinal evaluation of liver metastases in preclinical models. Cancer Res 65:5231–5237

    Article  CAS  PubMed  Google Scholar 

  13. Cheung AMY, Brown AS, Hastie LA, Cucevic V, Roy M, Lacefield JC, Fenster A, Foster FS (2005) Three-dimensional ultrasound biomicroscopy for xenograft growth analysis. Ultrasound Med Biol 31:865–870

    Article  PubMed  Google Scholar 

  14. Goertz DE, Yu JL, Kerbel RS, Burns PN, Foster FS (2002) High-frequency Doppler ultrasound monitors the effects of antivascular therapy on tumor blood flow. Cancer Res 62:6371–6375

    CAS  PubMed  Google Scholar 

  15. Coleman DJ, Lizzi FL, Silverman RH, Helson L, Torpey JH, Rondeau MJ (1985) A model for acoustic characterization of intraocular tumors. Invest Ophthalmol Vis Sci 26:545–550

    CAS  PubMed  Google Scholar 

  16. Feleppa EJ, Kalisz A, Sokil-Melgar JB et al (1996) Typing of prostate tissue by ultrasonic spectrum analysis. IEEE Trans Ultrason Ferroelectr Freq Control 43:609–619

    Article  Google Scholar 

  17. Yang M, Krueger TM, Miller JG, Holland MR (2007) Characterization of anisotropic myocardial backscatter using spectral slope, intercept and midband fit parameters. Ultrason Imaging 29:122–134

    Article  PubMed  Google Scholar 

  18. Mamou J, Coron A, Oelze M et al (2011) Three-dimensional high-frequency backscatter and envelope quantification of cancerous human lymph nodes. Ultrasound Med Biol 37(3):345–357

    Article  PubMed  PubMed Central  Google Scholar 

  19. Czarnota GJ, Kolios MC, Vaziri H, Benchimol S, Ottensmeyer FP, Sherar MD, Hunt JW (1997) Ultrasonic biomicroscopy of viable, dead and apoptotic cells. Ultrasound Med Biol 23:961–965

    Article  CAS  PubMed  Google Scholar 

  20. Vlad RM, Czarnota GJ, Giles A, Sherar MD, Hunt JW, Kolios MC (2005) High-frequency ultrasound for monitoring changes in liver tissue during preservation. Phys Med Biol 50:197–213

    Article  PubMed  Google Scholar 

  21. Brand S, Weiss EC, Lemor RM, Kolios MC (2008) High frequency ultrasound tissue characterization and acoustic microscopy of intracellular changes. Ultrasound Med Biol 34:1396–1407

    Article  PubMed  Google Scholar 

  22. Taggart LR, Baddour RE, Giles A, Czarnota GJ, Kolios MC (2007) Ultrasonic characterization of whole cells and isolated nuclei. Ultrasound Med Biol 33:389–401

    Article  PubMed  Google Scholar 

  23. Sadeghi-Naini A, Papanicolau N, Falou O et al (2013) Quantitative ultrasound evaluation of tumor cell death response in locally advanced breast cancer patients receiving chemotherapy. Clin Cancer Res 19:2163–2174

    Article  CAS  PubMed  Google Scholar 

  24. Insana MF, Wagner RF, Brown DG, Hall TJ (1990) Describing small-scale structure in random media using pulse-echo ultrasound. J Acoust Soc Am 87:179–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Oelze ML, O’Brien WD Jr, Blue JP, Zachary JF (2004) Differentiation and characterization of rat mammary fibroadenomas and 4T1 mouse carcinomas using quantitative ultrasound imaging. IEEE Trans Med Imaging 23(6):764–771

    Article  PubMed  Google Scholar 

  26. Tadayyon H, Sadeghi-Naini A, Czarnota GJ (2014) Noninvasive characterization of locally advanced breast cancer using textural analysis of quantitative ultrasound parametric images. Transl Oncol 7:759–767

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sannachi L, Tadayyon H, Sadeghi-Naini A, Tran W, Gandhi S, Wright F, Oelze M, Czarnota G (2014) Non-invasive evaluation of breast cancer response to chemotherapy using quantitative ultrasonic backscatter parameters. Med Image Anal 20:224–236

    Article  PubMed  Google Scholar 

  28. Brand S, Solanki B, Foster DB, Czarnota GJ, Kolios MC (2009) Monitoring of cell death in epithelial cells using high frequency ultrasound spectroscopy. Ultrasound Med Biol 35:482–493

    Article  PubMed  Google Scholar 

  29. Czarnota GJ, Kolios MC, Hunt JW, Sherar MD (2002) Ultrasound imaging of apoptosis. DNA-damage effects visualized. Methods Mol Biol 203:257–277

    CAS  PubMed  Google Scholar 

  30. Zamble DB, Lippard SJ (1995) Cisplatin and DNA repair in cancer chemotherapy. Trends Biochem Sci 20:435–439

    Article  CAS  PubMed  Google Scholar 

  31. Lizzi FL, Greenebaum M, Feleppa EJ, Elbaum M, Coleman DJ (1983) Theoretical framework for spectrum analysis in ultrasonic tissue characterization. J Acoust Soc Am 73:1366–1373

    Article  CAS  PubMed  Google Scholar 

  32. Lizzi FL, Astor M, Liu T, Deng C, Coleman DJ, Silverman RH (1997) Ultrasonic spectrum analysis for tissue assays and therapy evaluation. Int J Imaging Syst Technol 8:3–10

    Article  Google Scholar 

  33. Vlad R, Orlova V, Hunt J, Kolios M, Czarnota G (2008) Changes measured in the backscatter ultrasound signals during cell death can be potentially explained by an increase in cell size variance. Ultrason Imaging 29:256

    Google Scholar 

  34. Didenko VV (2011) DNA damage detection in situ, ex vivo, and in vivo: methods and protocols, Methods in Molecular Biology. Springer, New York

    Book  Google Scholar 

  35. Didenko VV (2002) In situ detection of DNA damage: methods and protocols, Methods in Molecular Biology. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgments

M.J.G. holds the Natural Sciences and Engineering Research Council of Canada Post-doctoral Fellowship. G.J.C. holds a University of Toronto James and Mary Davie Chair in Breast Cancer Imaging and Ablation. Funding for these projects was provided by the Terry Fox Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory J. Czarnota Ph.D., M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Tadayyon, H., Gangeh, M.J., Vlad, R., Kolios, M.C., Czarnota, G.J. (2017). Ultrasound Imaging of DNA-Damage Effects in Live Cultured Cells and in Brain Tissue. In: Didenko, V. (eds) Fast Detection of DNA Damage. Methods in Molecular Biology, vol 1644. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7187-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7187-9_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7185-5

  • Online ISBN: 978-1-4939-7187-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics