Skip to main content

Scale-Up of Phytosterols Bioconversion into Androstenedione

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1645))

Abstract

Phytosterols, generated as a by-product of vegetable oils or wood pulp, contain the cyclopentane-perhydro-phenanthrene nucleus, and can be converted into steroid intermediates by removing the C17 side chain. This chapter shows the scale-up, from flask to fermentor, of the phytosterols bioconversion into 4-androstene-3,17-dione (androstenedione; AD) with Mycobacterium neoaurum B-3805. Due to the fact that phytosterols and AD are nearly insoluble in water, two-phase systems and the use of chemically modified cyclodextrins have been described as methods to solve it. Here we use a water–oil two-phase system that allows for the bioconversion of up to 20 g/L of phytosterols into AD in 20 L fermentor.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Mahato SB, Garai S (1997) Advances in microbial steroid biotransformation. Steroids 62:332–345

    Article  CAS  PubMed  Google Scholar 

  2. Fernandes P, Cruz A, Angelova B, Pinheiro HM, Cabral JMS (2003) Microbial conversion of steroid compounds: recent developments. Enzym Microb Technol 32:688–705

    Article  CAS  Google Scholar 

  3. Batthi H, Khera RA (2012) Biological transformations of steroidal compounds: a review. Steroids 77:1267–1290

    Article  Google Scholar 

  4. Al Jasem Y, Khan M, Taha A, Thiemann T (2014) Preparation of steroidal hormones with an emphasis on transformations of phytosterols and cholesterol. Med J Chem 3:796–830

    Google Scholar 

  5. Marques MPC, Carvalho F, de Carvalho CCCR, Cabral JMS, Fernandes P (2010) Steroid bioconversion: towards green processes. Food Bioprod Process 88:12–20

    Article  CAS  Google Scholar 

  6. Moreau RA, Whitaker BD, Hicks KB (2002) Phytosterols, phytostanols, and their conjugates in foods: structural diversity, quantitative analysis, and health-promoting uses. Prog Lipid Res 41:457–500

    Article  CAS  PubMed  Google Scholar 

  7. Fernandes P, Cabral JMS (2007) Phytosterols: applications and recovery methods. Bioresour Technol 98:2335–2350

    Article  CAS  PubMed  Google Scholar 

  8. Kutney JP, Milanova RK, Vassilev CD, Stefanov S, Nedelcheva NV (2000) Process for the microbial conversion of phytosterol to androstenedione and androstadienedione. US Patent 6,071,714

    Google Scholar 

  9. Donova MV (2007) Transformation of steroids by actinobacteria: a review. Appl Biochem Microbiol 43:1–14

    Article  CAS  Google Scholar 

  10. Rodina NV, Molchanova MA, Voishvillo NE, Andryushina VA, Stytsenko TS (2008) Conversion of phytosterols into androstenedione by Mycobacterium neoaurum. Appl Biochem Microbiol 44:48–54

    Article  CAS  Google Scholar 

  11. Pérez C, Falero A, Duc HL, Balcinde Y, Hung BR (2006) A very efficient bioconversion of soybean phytosterols mixtures to androstanes by mycobacteria. J Ind Microbiol Biotechnol 33:719–723

    Article  PubMed  Google Scholar 

  12. Egorova OV, Gulevskaya SA, Puntus IF, Filonov AE, Donova MV (2002) Production of androstenedione using mutants of Mycobacterium sp. J Chem Technol Biotechnol 77:141–147

    Article  CAS  Google Scholar 

  13. Zhang XY, Peng Y, Su ZR, Chen QH, Ruan H, He GQ (2013) Optimization of biotransformation from phytosterol to androstenedione by a mutant Mycobacterium neoaurum ZJUVN-08. J Zhejiang Univ Sci B 14:132–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Marsheck WJ, Kraychy S, Muir RD (1972) Microbial degradation of sterols. Appl Microbiol 23(1):72–77

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Marsheck WJ, Heights A, Kraychy S (1973) Selective microbiological preparation of androst-4-ene-3,17-dione. US Patent 3,759,791

    Google Scholar 

  16. Rodríguez-García A, Fernández-Alegre E, Morales A, Sola-Landa A, Lorraine J, Macdonald S, Dovbnya D, Smith MC, Donova M, Barreiro C (2016) Complete genome sequence of ‘Mycobacterium neoaurum’ NRRL B-3805, an androstenedione (AD) producer for industrial biotransformation of sterols. J Biotechnol 224:64–65

    Article  PubMed  Google Scholar 

  17. Malaviya A, Gomes J (2008) Androstenedione production by biotransformation of phytosterols. Bioresour Technol 99:6725–6737

    Article  CAS  PubMed  Google Scholar 

  18. Hesselink PGM, Vliet SV, Vries HD, Witholt B (1989) Optimization of steroid side chain cleavage by Mycobacterium sp. in the presence of cyclodextrins. Enzym Microb Technol 11:398–404

    Article  CAS  Google Scholar 

  19. Carvalho F, Marques MPC, de Carvalho CCCR, Cabral JMS, Fernandes P (2009) Sitosterol bioconversion with resting cells in liquid polymer based systems. Bioresour Technol 100:4050–4053

    Article  CAS  PubMed  Google Scholar 

  20. Cruz A, Fernandes P, Cabral JMS, Pinheiro HM (2001) Whole-cell bioconversion of β-sitosterol in aqueous-oganic two-phase systems. J Mol Catal B Enzym 11:579–585

    Article  CAS  Google Scholar 

  21. Stefanov S, Yankov D, Beschkov V (2006) Biotransformation of phytosterols to androstenedione in two phase water-oil systems. Chem Biochem Eng Q 20:421–427

    CAS  Google Scholar 

  22. García-Ochoa F, Gómez E (2009) Fermentor scale-up and oxygen transfer rate in microbial processes: an overview. Biotechnol Adv 27(2):153–176

    Article  PubMed  Google Scholar 

  23. Gulla V, Banerjee T, Patil S (2008) Quantitative TLC analysis of steroid drug intermediates formed during bioconversion of soysterols. Chromatographia 68:663–667

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was fully supported by a grant of the European Union program ERA-IB [MySterI (EIB.12.010)] through the APCIN call of the Spanish Ministry of Economy and Competitiveness (MINECO, Spain) (PCIN-2013-024-C02-01). The authors want to thank the European Union program ERA-IB; the Spanish Ministry of Economy and Competitiveness (MINECO, Spain) and the MySterI Consortium (INBIOTEC, Pharmins Ltd., University of York, SINTEF, Technische Universität Dortmund, and Gadea Biopharma S.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Rodríguez-Sáiz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Martínez-Cámara, S., Bahíllo, E., Barredo, JL., Rodríguez-Sáiz, M. (2017). Scale-Up of Phytosterols Bioconversion into Androstenedione. In: Barredo, JL., Herráiz, I. (eds) Microbial Steroids. Methods in Molecular Biology, vol 1645. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7183-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7183-1_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7182-4

  • Online ISBN: 978-1-4939-7183-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics