Skip to main content

Hydrolysis and Dissolution of Amyloids by Catabodies

  • Protocol
  • First Online:
Natural Antibodies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1643))

Abstract

Catalytic antibodies (catabodies) hold potential for superior immunotherapy because of their turnover capability and no or minimal induction of inflammatory responses. Catabodies neutralize and remove target antigens more potently than conventional antibodies. Depending on the catalytic rate constant, a single catabody molecule degrades thousands to millions of target molecules over its useful lifespan, whereas conventional antibodies only form reversibly associated, stoichiometric complexes with the target. Thus, removal of the antibody-bound target requires accessory phagocytic cells that ingest the immune complexes, which is usually accompanied by release of inflammatory mediators. In comparison, catabodies bind the target only transiently, and the rapid and direct target destruction reduces the concentration of immune complexes that can activate inflammatory processes. These features are especially pertinent when large target amounts at anatomically vulnerable sites must be removed, e.g., amyloids. We reported specific catabodies to misfolded transthyretin (misTTR) amyloid and amyloid β peptide (Aβ). Accumulation of the oligomeric and fibrillized amyloid TTR forms causes diverse systemic pathologies, including cardiomyopathy, polyneuropathy, and skeletal diseases. Brain Aβ aggregates are thought to cause central nervous system degenerative disease, chiefly Alzheimer’s disease. We describe methods for testing catabody-mediated degradation and dissolution of Aβ and TTR.

The original version of this chapter was revised. An erratum to the chapter can be found at DOI: 10.1007/978-1-4939-7180-0_16

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Williams TL, Serpell LC (2011) Membrane and surface interactions of Alzheimer's Abeta peptide—insights into the mechanism of cytotoxicity. FEBS J 278(20):3905–3917

    Article  CAS  PubMed  Google Scholar 

  2. Sorgjerd K, Klingstedt T, Lindgren M, Kagedal K, Hammarstrom P (2008) Prefibrillar transthyretin oligomers and cold stored native tetrameric transthyretin are cytotoxic in cell culture. Biochem Biophys Res Commun 377(4):1072–1078

    Article  PubMed  Google Scholar 

  3. Bourgault S, Choi S, Buxbaum JN, Kelly JW, Price JL, Reixach N (2011) Mechanisms of transthyretin cardiomyocyte toxicity inhibition by resveratrol analogs. Biochem Biophys Res Commun 410(4):707–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Westermark P, Westermark GT, Suhr OB, Berg S (2014) Transthyretin-derived amyloidosis: probably a common cause of lumbar spinal stenosis. Ups J Med Sci 119(3):223–228

    Article  PubMed  PubMed Central  Google Scholar 

  5. Yanagisawa A, Ueda M, Sueyoshi T, Okada T, Fujimoto T, Ogi Y et al (2014) Amyloid deposits derived from transthyretin in the ligamentum flavum as related to lumbar spinal canal stenosis. Mod Pathol 28(2):201–207

    Article  PubMed  Google Scholar 

  6. Sekijima Y, Uchiyama S, Tojo K, Sano K, Shimizu Y, Imaeda T et al (2011) High prevalence of wild-type transthyretin deposition in patients with idiopathic carpal tunnel syndrome: a common cause of carpal tunnel syndrome in the elderly. Hum Pathol 42(11):1785–1791

    Article  PubMed  Google Scholar 

  7. Buxbaum JN, Reixach N (2009) Transthyretin: the servant of many masters. Cell Mol Life Sci 66(19):3095–3101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Plante-Bordeneuve V, Said G (2011) Familial amyloid polyneuropathy. Lancet Neurol 10(12):1086–1097

    Article  CAS  PubMed  Google Scholar 

  9. Ueda M, Horibata Y, Shono M, Misumi Y, Oshima T, Su Y et al (2011) Clinicopathological features of senile systemic amyloidosis: an ante- and post-mortem study. Mod Pathol 24(12):1533–1544

    Article  CAS  PubMed  Google Scholar 

  10. Ueda M, Ando Y (2014) Recent advances in transthyretin amyloidosis therapy. Transl Neurodegener 3:19. doi:10.1186/2047-9158-3-19

    Article  PubMed  PubMed Central  Google Scholar 

  11. Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R et al (2003) Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39(3):409–421

    Article  CAS  PubMed  Google Scholar 

  12. Spires-Jones TL, Hyman BT (2014) The intersection of amyloid beta and tau at synapses in Alzheimer’s disease. Neuron 82(4):756–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jacobson DR, Pastore R, Pool S, Malendowicz S, Kane I, Shivji A et al (1996) Revised transthyretin Ile 122 allele frequency in African-Americans. Hum Genet 98(2):236–238

    Article  CAS  PubMed  Google Scholar 

  14. Plante-Bordeneuve V, Kerschen P (2013) Transthyretin familial amyloid polyneuropathy. Handb Clin Neurol 115:643–658

    Article  CAS  PubMed  Google Scholar 

  15. Cacace R, Sleegers K, Van Broeckhoven C (2016) Molecular genetics of early-onset Alzheimer’s disease revisited. Alzheimers Dement 12(6):733–748

    Article  PubMed  Google Scholar 

  16. Paul S, Volle DJ, Beach CM, Johnson DR, Powell MJ, Massey RJ (1989) Catalytic hydrolysis of vasoactive intestinal peptide by human autoantibody. Science 244(4909):1158–1162

    Article  CAS  PubMed  Google Scholar 

  17. Gabibov AG, Gololobov GV, Makarevich OI, Schourov DV, Chernova EA, Yadav RP (1994) DNA-hydrolyzing autoantibodies. Appl Biochem Biotechnol 47(2–3):293–302; discussion 303

    Article  CAS  PubMed  Google Scholar 

  18. Ponomarenko NA, Durova OM, Vorobiev, II, Belogurov AA, Jr., Kurkova IN, Petrenko AG, Telegin GB et al (2006) Autoantibodies to myelin basic protein catalyze site-specific degradation of their antigen. Proc Natl Acad Sci U S A 103 (2):281-286

    Google Scholar 

  19. Ponomarenko NA, Durova OM, Vorobiev II, Aleksandrova ES, Telegin GB, Chamborant OG et al (2002) Catalytic antibodies in clinical and experimental pathology: human and mouse models. J Immunol Methods 269(1–2):197–211

    Article  CAS  PubMed  Google Scholar 

  20. Paul S, Planque SA, Nishiyama Y, Hanson CV, Massey RJ (2012) Nature and nurture of catalytic antibodies. Adv Exp Med Biol 750:56–75

    Article  CAS  PubMed  Google Scholar 

  21. Planque SA, Nishiyama Y, Sonoda S, Lin Y, Taguchi H, Hara M et al (2015) Specific amyloid beta clearance by a catalytic antibody construct. J Biol Chem 290(16):10229–10241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Planque S, Mitsuda Y, Taguchi H, Salas M, Morris MK, Nishiyama Y et al (2007) Characterization of gp120 hydrolysis by IgA antibodies from humans without HIV infection. AIDS Res Hum Retrovir 23(12):1541–1554

    Article  CAS  PubMed  Google Scholar 

  23. Hifumi E, Morihara F, Hatiuchi K, Okuda T, Nishizono A, Uda T (2008) Catalytic features and eradication ability of antibody light-chain UA15-L against Helicobacter pylori. J Biol Chem 283(2):899–907

    Article  CAS  PubMed  Google Scholar 

  24. Cho S, Youn HN, Hoang PM, Cho S, Kim KE, Kil EJ et al (2015) Preventive Activity against Influenza (H1N1) Virus by intranasally delivered RNA-hydrolyzing antibody in respiratory epithelial cells of mice. Virus 7(9):5133–5144

    Article  CAS  Google Scholar 

  25. Tomin A, Dumych T, Tolstyak Y, Kril I, Mahorivska I, Bila E et al (2015) Desialylation of dying cells with catalytically active antibodies possessing sialidase activity facilitate their clearance by human macrophages. Clin Exp Immunol 179(1):17–23

    Article  CAS  PubMed  Google Scholar 

  26. Kou J, Yang J, Lim JE, Pattanayak A, Song M, Planque S et al (2015) Catalytic immunoglobulin gene delivery in a mouse model of Alzheimer’s disease: prophylactic and therapeutic applications. Mol Neurobiol 51(1):43–56

    Article  CAS  PubMed  Google Scholar 

  27. Planque SA, Nishiyama Y, Hara M, Sonoda S, Murphy SK, Watanabe K et al (2014) Physiological IgM class catalytic antibodies selective for transthyretin amyloid. J Biol Chem 289(19):13243–13258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Paul S, Tramontano A, Gololobov G, Zhou YX, Taguchi H, Karle S et al (2001) Phosphonate ester probes for proteolytic antibodies. J Biol Chem 276(30):28314–28320

    Article  CAS  PubMed  Google Scholar 

  29. Taguchi H, Planque S, Sapparapu G, Boivin S, Hara M, Nishiyama Y et al (2008) Exceptional amyloid beta peptide hydrolyzing activity of nonphysiological immunoglobulin variable domain scaffolds. J Biol Chem 283(52):36724–36733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nishiyama Y, Taguchi H, Hara M, Planque SA, Mitsuda Y, Paul S (2014) Metal-dependent amyloid beta-degrading catalytic antibody construct. J Biotechnol 180:17–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hifumi E, Honjo E, Fujimoto N, Arakawa M, Nishizono A, Uda T (2012) Highly efficient method of preparing human catalytic antibody light chains and their biological characteristics. FASEB J 26(4):1607–1615

    Article  CAS  PubMed  Google Scholar 

  32. Matsuura K, Ohara K, Munakata H, Hifumi E, Uda T (2006) Pathogenicity of catalytic antibodies: catalytic activity of Bence Jones proteins from myeloma patients with renal impairment can elicit cytotoxic effects. Biol Chem 387(5):543–548

    Article  CAS  PubMed  Google Scholar 

  33. Timofeeva AM, Buneva VN, Nevinsky GA (2015) Systemic lupus erythematosus: molecular cloning and analysis of 22 individual recombinant monoclonal kappa light chains specifically hydrolyzing human myelin basic protein. J Mol Recognit 28(10):614–627

    Article  CAS  PubMed  Google Scholar 

  34. Bezuglova AM, Konenkova LP, Doronin BM, Buneva VN, Nevinsky GA (2011) Affinity and catalytic heterogeneity and metal-dependence of polyclonal myelin basic protein-hydrolyzing IgGs from sera of patients with systemic lupus erythematosus. J Mol Recognit 24(6):960–974

    Article  PubMed  Google Scholar 

  35. Nevinsky GA, Buneva VN (2002) Human catalytic RNA- and DNA-hydrolyzing antibodies. J Immunol Methods 269(1–2):235–249

    Article  CAS  PubMed  Google Scholar 

  36. Wootla B, Christophe OD, Mahendra A, Dimitrov JD, Repesse Y, Ollivier V et al (2011) Proteolytic antibodies activate factor IX in patients with acquired hemophilia. Blood 117(7):2257–2264

    Article  CAS  PubMed  Google Scholar 

  37. Taguchi H, Planque S, Nishiyama Y, Symersky J, Boivin S, Szabo P et al (2008) Autoantibody-catalyzed hydrolysis of amyloid beta peptide. J Biol Chem 283(8):4714–4722

    Article  CAS  PubMed  Google Scholar 

  38. Sapparapu G, Planque S, Mitsuda Y, McLean G, Nishiyama Y, Paul S (2012) Constant domain-regulated antibody catalysis. J Biol Chem 287(43):36096–36104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gao QS, Paul S (1995) Molecular cloning of antiground-state proteolytic antibody fragments. Methods Mol Biol 51:281–296

    CAS  PubMed  Google Scholar 

  40. Echan LA, Speicher DW (2002) Protein detection in gels using fixation. Curr Protoc Protein Sci:10–15

    Google Scholar 

  41. Paul S (1994) Catalytic activity of anti-ground state antibodies, antibody subunits, and human autoantibodies. Appl Biochem Biotechnol 47(2–3):241–253. discussion 253-245

    Article  CAS  PubMed  Google Scholar 

  42. Jan A, Hartley DM, Lashuel HA (2010) Preparation and characterization of toxic Abeta aggregates for structural and functional studies in Alzheimer's disease research. Nat Protoc 5(6):1186–1209

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the SENS Research Foundation and NIH grants R01AG025304 and 5U01AG033183. Stephanie Planque and Sudhir Paul have a financial interest in Covalent Bioscience, Inc. and patents concerning catalytic antibodies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie A. Planque .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Meretoja, V.V., Paul, S., Planque, S.A. (2017). Hydrolysis and Dissolution of Amyloids by Catabodies. In: Kaveri, S., Bayry, J. (eds) Natural Antibodies. Methods in Molecular Biology, vol 1643. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7180-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7180-0_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7179-4

  • Online ISBN: 978-1-4939-7180-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics