Evaluating the Impact of Natural IgM on Adenovirus Type 5 Gene Therapy Vectors

  • Zhili Xu
  • Jie Tian
  • Andrew W. Harmon
  • Andrew P. Byrnes
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1643)

Abstract

Natural IgM antibodies have an innate ability to recognize many viruses and viral-based gene therapy vectors. Naive mice have natural IgM antibodies that bind to adenoviruses, and these antibodies can profoundly affect the biodistribution and efficiency of gene delivery by adenovirus type 5 vectors. Here, we present protocols for isolating IgM from mouse serum, for assaying the concentration and adenoviral reactivity of mouse IgM, and for evaluating how natural antibodies and complement can synergize to neutralize adenovirus vectors.

Key words

Natural IgM antibodies Adenovirus type 5 vectors Mouse Complement Gene delivery Virus 

Notes

Acknowledgments

This work was supported by the FDA, including funding from the CBER’s Critical Path program. We thank Mike Havert and Nirjal Bhattarai for reviewing the manuscript.

References

  1. 1.
    The Journal of Gene Medicine Gene Therapy Clinical Trials Worldwide (.2016) http://wwwabediacom/wiley/vectorsphpGoogle Scholar
  2. 2.
    Parker AL, Waddington SN, Buckley SM, Custers J, Havenga MJ, van Rooijen N et al (2009) Effect of neutralizing sera on factor X-mediated adenovirus serotype 5 gene transfer. J Virol 83(1):479–483. doi: 10.1128/JVI.01878-08 CrossRefPubMedGoogle Scholar
  3. 3.
    Vogels R, Zuijdgeest D, van Rijnsoever R, Hartkoorn E, Damen I, de Bethune MP et al (2003) Replication-deficient human adenovirus type 35 vectors for gene transfer and vaccination: efficient human cell infection and bypass of preexisting adenovirus immunity. J Virol 77(15):8263–8271CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Tsai V, Johnson DE, Rahman A, Wen SF, LaFace D, Philopena J et al (2004) Impact of human neutralizing antibodies on antitumor efficacy of an oncolytic adenovirus in a murine model. Clin Cancer Res 10(21):7199–7206. doi: 10.1158/1078-0432.CCR-04-0765. 10/21/7199 [pii]CrossRefPubMedGoogle Scholar
  5. 5.
    Pichla-Gollon SL, Lin SW, Hensley SE, Lasaro MO, Herkenhoff-Haut L, Drinker M et al (2009) Effect of preexisting immunity on an adenovirus vaccine vector: in vitro neutralization assays fail to predict inhibition by antiviral antibody in vivo. J Virol 83(11):5567–5573. doi: 10.1128/JVI.00405-09 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Byrnes AP (2016) Antibodies against adenoviruses. In: Curiel D (ed) Adenovirus vectors for gene therapy, 2nd edn. Elsevier, Amsterdam, pp 367–390Google Scholar
  7. 7.
    Wolff G, Worgall S, van Rooijen N, Song WR, Harvey BG, Crystal RG (1997) Enhancement of in vivo adenovirus-mediated gene transfer and expression by prior depletion of tissue macrophages in the target organ. J Virol 71(1):624–629PubMedPubMedCentralGoogle Scholar
  8. 8.
    Tao N, Gao GP, Parr M, Johnston J, Baradet T, Wilson JM et al (2001) Sequestration of adenoviral vector by Kupffer cells leads to a nonlinear dose response of transduction in liver. Mol Ther 3(1):28–35. doi: 10.1006/mthe.2000.0227 CrossRefPubMedGoogle Scholar
  9. 9.
    Manickan E, Smith JS, Tian J, Eggerman TL, Lozier JN, Muller J et al (2006) Rapid Kupffer cell death after intravenous injection of adenovirus vectors. Mol Ther 13(1):108–117. doi: 10.1016/j.ymthe.2005.08.007 CrossRefPubMedGoogle Scholar
  10. 10.
    Di Paolo NC, Doronin K, Baldwin LK, Papayannopoulou T, Shayakhmetov DM (2013) The transcription factor IRF3 triggers “defensive suicide” necrosis in response to viral and bacterial pathogens. Cell Rep 3(6):1840–1846. doi: 10.1016/j.celrep.2013.05.025. S2211-1247(13)00242-8 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    He JQ, Keatschke KJ Jr, Gribling P, Suto E, Lee WP, Diehl L et al (2013) CRIg mediates early Kupffer cell responses to adenovirus. J Leukoc Biol 93:301–306. doi: 10.1189/jlb.0612311. jlb.0612311 [pii]CrossRefPubMedGoogle Scholar
  12. 12.
    Smith JS, Xu Z, Tian J, Stevenson SC, Byrnes AP (2008) Interaction of systemically delivered adenovirus vectors with Kupffer cells in mouse liver. Hum Gene Ther 19(5):547–554. doi: 10.1089/hum.2008.004 CrossRefPubMedGoogle Scholar
  13. 13.
    Xu ZL, Tian J, Smith JS, Byrnes AP (2008) Clearance of adenovirus by Kupffer cells is mediated by scavenger receptors, natural antibodies, and complement. J Virol 82(23):11705–11713. doi: 10.1128/Jvi.01320-08 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Unzu C, Melero I, Morales-Kastresana A, Sampedro A, Serrano-Mendioroz I, Azpilikueta A et al (2014) Innate functions of immunoglobulin M lessen liver gene transfer with helper-dependent adenovirus. PLoS One 9(1):e85432. doi: 10.1371/journal.pone.0085432 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Qiu Q, Xu Z, Tian J, Moitra R, Gunti S, Notkins AL et al (2015) Impact of natural IgM concentration on gene therapy with adenovirus type 5 vectors. J Virol 89(6):3412–3416. doi: 10.1128/JVI.03217-14. JVI.03217-14 [pii]CrossRefPubMedGoogle Scholar
  16. 16.
    Khare R, Hillestad ML, Xu Z, Byrnes AP, Barry MA (2013) Circulating antibodies and macrophages as modulators of adenovirus pharmacology. J Virol 87(7):3678–3686. doi: 10.1128/JVI.01392-12. JVI.01392-12 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Corte-Real J, Rodo J, Almeida P, Garcia J, Coutinho A, Demengeot J et al (2009) Irf4 is a positional and functional candidate gene for the control of serum IgM levels in the mouse. Genes Immun 10(1):93–99. doi: 10.1038/gene.2008.73. gene200873 [pii]CrossRefPubMedGoogle Scholar
  18. 18.
    Snoeys J, Mertens G, Lievens J, van Berkel T, Collen D, Biessen EA et al (2006) Lipid emulsions potently increase transgene expression in hepatocytes after adenoviral transfer. Mol Ther 13(1):98–107. doi: 10.1016/j.ymthe.2005.06.477 CrossRefPubMedGoogle Scholar
  19. 19.
    Borsos T, Rapp HJ (1965) Complement fixation on cell surfaces by 19S and 7S antibodies. Science 150(3695):505–506CrossRefPubMedGoogle Scholar
  20. 20.
    Xu Z, Qiu Q, Tian J, Smith JS, Conenello GM, Morita T et al (2013) Coagulation factor X shields adenovirus type 5 from attack by natural antibodies and complement. Nat Med 19(4):452–457. doi: 10.1038/nm.3107. nm.3107 [pii]CrossRefPubMedGoogle Scholar
  21. 21.
    Tian J, Xu Z, Smith JS, Hofherr SE, Barry MA, Byrnes AP (2009) Adenovirus activates complement by distinctly different mechanisms in vitro and in vivo: indirect complement activation by virions in vivo. J Virol 83(11):5648–5658. doi: 10.1128/JVI.00082-09 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Waddington SN, McVey JH, Bhella D, Parker AL, Barker K, Atoda H et al (2008) Adenovirus serotype 5 hexon mediates liver gene transfer. Cell 132(3):397–409. doi: 10.1016/j.cell.2008.01.016 CrossRefPubMedGoogle Scholar
  23. 23.
    Doronin K, Flatt JW, Di Paolo NC, Khare R, Kalyuzhniy O, Acchione M et al (2012) Coagulation factor X activates innate immunity to human species C adenovirus. Science 338(6108):795–798. doi: 10.1126/science.1226625. science.1226625 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kalyuzhniy O, Di Paolo NC, Silvestry M, Hofherr SE, Barry MA, Stewart PL et al (2008) Adenovirus serotype 5 hexon is critical for virus infection of hepatocytes in vivo. Proc Natl Acad Sci U S A 105(14):5483–5488CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Duffy MR, Doszpoly A, Turner G, Nicklin SA, Baker AH (2016) The relevance of coagulation factor X protection of adenoviruses in human sera. Gene Ther. doi: 10.1038/gt.2016.32 PubMedPubMedCentralGoogle Scholar
  26. 26.
    Ma J, Duffy MR, Deng L, Dakin RS, Uil T, Custers J et al (2015) Manipulating adenovirus hexon hypervariable loops dictates immune neutralisation and coagulation factor X-dependent cell interaction in vitro and in vivo. PLoS Pathog 11(2):e1004673. doi: 10.1371/journal.ppat.1004673. PPATHOGENS-D-14-02650 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Vellekamp G, Porter FW, Sutjipto S, Cutler C, Bondoc L, Liu YH et al (2001) Empty capsids in column-purified recombinant adenovirus preparations. Hum Gene Ther 12(15):1923–1936. doi: 10.1089/104303401753153974 CrossRefPubMedGoogle Scholar
  28. 28.
    Lachmann PJ (2010) Preparing serum for functional complement assays. J Immunol Methods 352(1–2):195–197. doi: 10.1016/j.jim.2009.11.003. S0022-1759(09)00339-1 [pii]CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Zhili Xu
    • 1
  • Jie Tian
    • 1
  • Andrew W. Harmon
    • 1
  • Andrew P. Byrnes
    • 1
  1. 1.Division of Cellular and Gene Therapies, Center for Biologics Evaluation and ResearchFood and Drug AdministrationSilver SpringUSA

Personalised recommendations