Advertisement

In Vivo Rat T-Lymphocyte Pig-a Assay: Detection and Expansion of Cells Deficient in the GPI-Anchored CD48 Surface Marker for Analysis of Mutation in the Endogenous Pig-a Gene

  • Vasily N. DobrovolskyEmail author
  • Javier Revollo
  • Dayton M. Petibone
  • Robert H. Heflich
Part of the Methods in Molecular Biology book series (MIMB, volume 1641)

Abstract

The Pig-a assay is being developed as an in vivo gene mutation assay for regulatory safety assessments. The assay is based on detecting mutation in the endogenous Pig-a gene of treated rats by using flow cytometry to measure changes in cell surface markers of peripheral blood cells. Here we present a methodology for demonstrating that phenotypically mutant rat T-cells identified by flow cytometry contain mutations in the Pig-a gene, an important step for validating the assay. In our approach, the mutant phenotype T-cells are sorted into individual wells of 96-well plates and expanded into clones. Subsequent sequencing of genomic DNA from the expanded clones confirms that the Pig-a assay detects exactly what it claims to detect—cells with mutations in the endogenous Pig-a gene. In addition, determining the spectra of Pig-a mutations provides information for better understanding the mutational mechanism of compounds of interest. Our methodology of combining phenotypic antibody labeling, magnetic enrichment, sorting, and single-cell clonal expansion can be used in genotoxicity/mutagenicity studies and in other general immunotoxicology research requiring identification, isolation, and expansion of extremely rare subpopulations of T-cells.

Key words

Glycosyl phosphatidylinositol Phosphatidylinositol glycan class A gene Flow cytometry Sorting Antibody 

References

  1. 1.
    Tiede A, Bastisch I, Schubert J, Orlean P, Schmidt RE (1999) Biosynthesis of glycosylphosphatidylinositols in mammals and unicellular microbes. Biol Chem 380:503–523CrossRefPubMedGoogle Scholar
  2. 2.
    Kinoshita T, Fujita M, Maeda Y (2008) Biosynthesis, remodelling and functions of mammalian GPI-anchored proteins: recent progress. J Biochem 144:287–294CrossRefPubMedGoogle Scholar
  3. 3.
    Kinoshita T, Inoue N (2000) Dissecting and manipulating the pathway for glycosylphosphatidylinositol-anchor biosynthesis. Curr Opin Chem Biol 4:632–638CrossRefPubMedGoogle Scholar
  4. 4.
    Tomita M (1999) Biochemical background of paroxysmal nocturnal hemoglobinuria. Biochim Biophys Acta 1455:269–286CrossRefPubMedGoogle Scholar
  5. 5.
    Inoue N, Murakami Y, Kinoshita T (2003) Molecular genetics of paroxysmal nocturnal hemoglobinuria. Int J Hematol 77:107–112CrossRefPubMedGoogle Scholar
  6. 6.
    Bessler M, Mason PJ, Hillmen P, Miyata T, Yamada N, Takeda J, Luzzatto L, Kinoshita T (1994) Paroxysmal nocturnal haemoglobinuria (PNH) is caused by somatic mutations in the PIG-A gene. EMBO J 13:110–117PubMedPubMedCentralGoogle Scholar
  7. 7.
    Araten DJ, Nafa K, Pakdeesuwan K, Luzzatto L (1999) Clonal populations of hematopoietic cells with paroxysmal nocturnal hemoglobinuria genotype and phenotype are present in normal individuals. Proc Natl Acad Sci U S A 96:5209–5214CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Dobrovolsky VN, Elespuru RK, Bigger CA, Robison TW, Heflich RH (2011) Monitoring humans for somatic mutation in the endogenous PIG-A gene using red blood cells. Environ Mol Mutagen 52:784–794Google Scholar
  9. 9.
    Dertinger SD, Avlasevich SL, Bemis JC, Chen Y, MacGregor JT (2015) Human erythrocyte PIG-A assay: an easily monitored index of gene mutation requiring low volume blood samples. Environ Mol Mutagen 56:366–377CrossRefPubMedGoogle Scholar
  10. 10.
    Rondelli T, Berardi M, Peruzzi B, Boni L, Caporale R, Dolara P, Notaro R, Luzzatto L (2013) The frequency of granulocytes with spontaneous somatic mutations: a wide distribution in a normal human population. PLoS One 8:e54046CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Miura D, Dobrovolsky VN, Kasahara Y, Katsuura Y, Heflich RH (2008) Development of an in vivo gene mutation assay using the endogenous Pig-A gene: I. Flow cytometric detection of CD59-negative peripheral red blood cells and CD48-negative spleen T-cells from the rat. Environ Mol Mutagen 49:614–621CrossRefPubMedGoogle Scholar
  12. 12.
    Phonethepswath S, Bryce SM, Bemis JC, Dertinger SD (2008) Erythrocyte-based Pig-a gene mutation assay: demonstration of cross-species potential. Mutat Res 657:122–126CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Dobrovolsky VN, Shaddock JG, Mittelstaedt RA, Manjanatha MG, Miura D, Uchikawa M, Mattison DR, Morris SM (2009) Evaluation of Macaca mulatta as a model for genotoxicity studies. Mutat Res 673:21–28CrossRefPubMedGoogle Scholar
  14. 14.
    Phonethepswath S, Franklin D, Torous DK, Bryce SM, Bemis JC, Raja S, Avlasevich S, Weller P, Hyrien O, Palis J et al (2010) Pig-a mutation: kinetics in rat erythrocytes following exposure to five prototypical mutagens. Toxicol Sci 114:59–70CrossRefPubMedGoogle Scholar
  15. 15.
    Dertinger SD, Bryce SM, Phonethepswath S, Avlasevich SL (2011) When pigs fly: immunomagnetic separation facilitates rapid determination of Pig-a mutant frequency by flow cytometric analysis. Mutat Res 721:163–170CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Gollapudi BB, Lynch AM, Heflich RH, Dertinger SD, Dobrovolsky VN, Froetschl R, Horibata K, Kenyon MO, Kimoto T, Lovell DP, Stankowski LF, White PA, Witt KL, Tanir JY (2015) The in vivo Pig-a assay: a report of the International Workshop on Genotoxicity Testing (IWGT) Workgroup. Mutat Res 783:23–35CrossRefGoogle Scholar
  17. 17.
    Dobrovolsky VN, Miura D, Heflich RH, Dertinger SD (2010) The in vivo Pig-a gene mutation assay, a potential tool for regulatory safety assessment. Environ Mol Mutagen 51:825–835CrossRefPubMedGoogle Scholar
  18. 18.
    Revollo J, Pearce MG, Petibone DM, Mittelstaedt RA, Dobrovolsky VN (2015) Confirmation of Pig-a mutation in flow cytometry-identified CD48-deficient T-lymphocytes from F344 rats. Mutagenesis 30:315–324CrossRefPubMedGoogle Scholar
  19. 19.
    Dobrovolsky VN, Revollo J, Pearce MG, Pacheco-Martinez MM, Lin H (2015) CD48-deficient T-lymphocytes from DMBA-treated rats have de novo mutations in the endogenous Pig-a gene. Environ Mol Mutagen 56:674–683CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Vasily N. Dobrovolsky
    • 1
    Email author
  • Javier Revollo
    • 1
  • Dayton M. Petibone
    • 1
  • Robert H. Heflich
    • 1
  1. 1.Division of Genetic and Molecular ToxicologyNational Center for Toxicological Research, US Food and Drug AdministrationJeffersonUSA

Personalised recommendations