NMR and MS Methods for Metabolomics

  • Alexander Amberg
  • Björn RiefkeEmail author
  • Götz Schlotterbeck
  • Alfred Ross
  • Hans Senn
  • Frank Dieterle
  • Matthias Keck
Part of the Methods in Molecular Biology book series (MIMB, volume 1641)


Metabolomics, also often referred as “metabolic profiling,” is the systematic profiling of metabolites in biofluids or tissues of organisms and their temporal changes. In the last decade, metabolomics has become more and more popular in drug development, molecular medicine, and other biotechnology fields, since it profiles directly the phenotype and changes thereof in contrast to other “-omics” technologies. The increasing popularity of metabolomics has been possible only due to the enormous development in the technology and bioinformatics fields. In particular, the analytical technologies supporting metabolomics, i.e., NMR, UPLC-MS, and GC-MS, have evolved into sensitive and highly reproducible platforms allowing the determination of hundreds of metabolites in parallel. This chapter describes the best practices of metabolomics as seen today. All important steps of metabolic profiling in drug development and molecular medicine are described in great detail, starting from sample preparation to determining the measurement details of all analytical platforms, and finally to discussing the corresponding specific steps of data analysis.

Key words

Metabolomics Metabolic profiling NMR UPLC-MS GC-MS 


  1. 1.
    Nicholson JK, Lindon JC, Holmes E (1999) “Metabonomics”: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29:1181–1189CrossRefPubMedGoogle Scholar
  2. 2.
    Dieterle F, Schlotterbeck G, Binder M, Ross A, Suter L, Senn H (2007) Application of metabonomics in a comparative profiling study reveals N-Acetylfelinine excretion as a biomarker for inhibition of the Farnesyl pathway by bisphosphonates. Chem Res Toxicol 20:1291–1299CrossRefPubMedGoogle Scholar
  3. 3.
    Markley JL, Brüschweiler R, Edison AS, Eghbalnia HR, Powers R, Raftery D, Wishart DS (2017) The future of NMR-based metabolomics. Curr Opin Biotechnol 43:34–40CrossRefPubMedGoogle Scholar
  4. 4.
    Dieterle F, Riefke B, Schlotterbeck G, Ross A, Senn H, Amberg A (2011) NMR and MS methods for metabonomics. Methods Mol Biol 691:385–415CrossRefPubMedGoogle Scholar
  5. 5.
    Wishart DS (2007) Proteomics and the human metabolome project. Expert Rev Proteomics 4:333–335CrossRefPubMedGoogle Scholar
  6. 6.
    Bollard ME, Holmes E, Lindon JC, Mitchell SC, Branstetter D, Zhang W, Nicholson JK (2001) Investigations into biochemical changes due to diurnal variation and estrus cycle in female rats using high resolution 1H NMR spectroscopy of urine and pattern recognition. Anal Biochem 295:194–202CrossRefPubMedGoogle Scholar
  7. 7.
    Bell JD, Sadler PJ, Morris VC, Levander OA (1991) Effect of aging and diet on proton NMR spectra of rat urine. Magn Reson Med 17:414–422CrossRefPubMedGoogle Scholar
  8. 8.
    Phipps AN, Steward J, Wright B, Wilson ID (1998) Effect on diet on urinary excretion of hippuric acid and other dietary-derived aromatics in the rat. A complex interaction between diet, gut microflora and substrate specificity. Xenobiotica 28:527–537CrossRefPubMedGoogle Scholar
  9. 9.
    Bollard ME, Stanley EG, Lindon JC, Nicholson JK, Holmes E (2005) NMR-based metabonomic approaches for evaluating physiological influences on biofluid composition. NMR Biomed 18:143–162CrossRefPubMedGoogle Scholar
  10. 10.
    Griffin JL, Walker LA, Garrod S, Holmes E, Shore RF, Nicholson JK (2000) NMR spectroscopy based metabonomic studies on the comparative biochemistry of the kidney and urine of the blank vole (Clethrionomys glareolus), wood mouse (Apodemus sylvaticus), white toothed shrew (Crocidura suaveolens), and the laboratory rat. Comp Biochem Physiol 127:357–367CrossRefGoogle Scholar
  11. 11.
    Van Dorsten FA, Daykin CA, Mulder TPJ, Duynhoven JPM (2006) Metabonomic approach to determine metabolic differences between green tea and black tea consumption. J Agric Food Chem 54:6929–6938CrossRefPubMedGoogle Scholar
  12. 12.
    Stella C, Beckwith-hall B, Cloarec O, Lindon JC, Powell J, van der Ouderaa F, Bingham S, Cross AJ, Nicholson JK (2006) Susceptibility of human metabolic phenotype to dietary modulation. J Proteome Res 5:2780–2788Google Scholar
  13. 13.
    Solanky KS, Bailey NJC, Beckwith-Hall B, Davies A, Bingham S, Holmes E, Nicholson JK, Cassidy A (2003) Application of biofluid 1H nuclear resonance-based metabonomic technique for the analysis of biochemical effects of dietary isoflavones on human plasma profiles. Anal Biochem 323:197–204CrossRefPubMedGoogle Scholar
  14. 14.
    Beckonert O, Keun HC, Ebbels TMD, bundy J, Holmes E, Lindon JC, Nicholson JK (2006) Metabolic profiling and metabonomics procedures for NMR spectroscopy or urine, plasma and serum and tissue extracts. Nat Protoc 2(11):2692–2703CrossRefGoogle Scholar
  15. 15.
    Teahan O, Gamble S, Holmes E, Waxman J, Nicholson JK, Bevan C, Keun HC (2006) Impact of analytical bias in metabonomic studies of human blood serum and plasma. Anal Chem 78(13):4307–4318CrossRefPubMedGoogle Scholar
  16. 16.
    Maher AD, Zirah SF, Holmes E, Nicholson JK (2007) Experimental and analytical variation in human urine in 1H NMR spectroscopy-based metabolic phenotyping studies. Anal Chem 79(14):5204–5211CrossRefPubMedGoogle Scholar
  17. 17.
    European Convention for the Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes Strasbourg, 18.III.1986 Text amended according to the provisions of the Protocol (ETS No. 170) as of its entry into force on 2 December 2005Google Scholar
  18. 18.
    EEC Directive. Council Directive of November 24, 1986 on the approximation of laws, regulations and administrative provisions of the Member States regarding the protection of animals used for experimental and other scientific purposes 86/609/EEC. Official Journal of the European Community No. L 358 of 18 December 1986Google Scholar
  19. 19.
    Good Laboratory Practice Regulations for Nonclinical Laboratory Studies of the United States Food and Drug Administration (21 CFR Part 58)Google Scholar
  20. 20.
    Morton DB, Abbot D, Barclay R, Close BS, Ewbank R, Gask D, Heath M, Mattic S, Poole T, Seamer J, Southee J, Thompson A, Trussell B, West C, Jennings M (1993) Removal of blood from laboratory mammals and birds. Lab Anim 27:1–22CrossRefGoogle Scholar
  21. 21.
    Diehl K-H, Hull R, Morton D, Pfister R, Rabemampianina Y, Smith D, Vidal J-M, van den Vorstenbosch C (2001) A good practice guide to the administration of substances and removal of blood, including routes and volumes. J Appl Toxicol 21:15–23CrossRefPubMedGoogle Scholar
  22. 22.
    Robertson DG, Reily MD, Lindon JC, Holmes E, Nicholson JK (2002) Metabonomic technology as a tool for rapid throughput in vivo toxicity screening. In: van den Heuvel JP, Perdew GH, Mattes WB, Greenlee WF (eds) Comprehensive toxicology, vol 14. Elsevier, Amsterdam, pp 583–610Google Scholar
  23. 23.
    Nicholls A, Nicholson JK, Haselden JN, Waterfield CJ (2000) A metabonomics approach to the investigation of drug-induced phospholipidosis: an NMR spectroscopy and pattern recognition study. Biomarkers 5(6):410–423CrossRefGoogle Scholar
  24. 24.
    Ellis JK, Athersuch TJ, Cavill R, Radford R, Slattery C, Jennings P, McMorrow T, Ryan MP, Ebbels TM, Keun HC (2011) Metabolic response to low-level toxicant exposure in a novel renal tubule epithelial cell system. Mol BioSyst 7(1):247–257CrossRefPubMedGoogle Scholar
  25. 25.
    Wenzel C, Riefke B, Gruendemann S, Krebs A, Christian S, Prinz F, Osterland M, Golfier S, Räse S, Ansari N, Esner M, Bickle M, Pampaloni F, Mattheyer C, Stelzer EH, Parczyk K, Prechtl S, Steigemann P (2014) 3D high-content screening for the identification of compounds that target cells in dormant tumor spheroid regions. Exp Cell Res 323(1):131–143CrossRefPubMedGoogle Scholar
  26. 26.
    Römisch-Margl W, Prehn C, Bogumil R, Röhring C, Suhre K, Adamski J (2012) Procedure for tissue sample preparation and metabolite extraction for high-throughput targeted metabolomics. Metabolomics 8:133CrossRefGoogle Scholar
  27. 27.
    Lindon JC, Nicholson JK, Holmes E, Everett JER (2000) Metabonomics: metabolic processes studied by NMR spectroscopy of biofluids. Concepts Magn Reson 12:289–320CrossRefGoogle Scholar
  28. 28.
    Keun HC, Ebbels TMD, Antti H, Bollard ME, Beckonert O, Schlotterbeck G, Senn H, Niederhauser U, Holmes E, Lindon JC, Nicholson JK (2002) Analytical reproducibility in 1H NMR-based metabonomic urinalysis. Chem Res Toxicol 15:1380–1386CrossRefPubMedGoogle Scholar
  29. 29.
    Want EJ, O’Maille G, Smith CA, Brandon TR, Uritboonthai W, Qin C, Trauger SA, Siuzdak G (2006) Solvent-dependent metabolite distribution, clustering, and protein extraction for serum profiling with mass spectrometry. Anal Chem 78:743–752CrossRefPubMedGoogle Scholar
  30. 30.
    Boernsen KO, Gatzek S, Imbert G (2005) Controlled protein precipitation in combination with chip-based nanospray infusion mass spectrometry. An approach for metabolomics profiling of plasma. Anal Chem 77:7255–7264CrossRefPubMedGoogle Scholar
  31. 31.
    A J, Trygg J, Gullberg J, Johansson AI, Jonsson P, Antti H, Marklund SL, Moritz T (2005) Extraction and GC/MS analysis of the human blood plasma Metabolome. Anal Chem 77:8086–8094CrossRefPubMedGoogle Scholar
  32. 32.
    Wagner S, Scholz K, Sieber M, Kellert M, Voelkel W (2007) Tools in metabolomics: an integrated validation approach for LC-MS metabolic profiling of mercapturic acid in human urine. Anal Chem 79:2918–2926CrossRefPubMedGoogle Scholar
  33. 33.
    Waybright TJ, Van QN, Muschik GM, Conrads TP, Veenstra TD, Issaq HJ (2006) LC-MS in metabonomics: optimization of experimental conditions for the analysis of metabolites in human urine. J Liq Chromatogr Relat Technol 29:2475–2497CrossRefGoogle Scholar
  34. 34.
    Wilson ID, Plumb R, Granger J, Major H, Williams R, Lenz EM (2005) HPLC-MS-based methods for the study of metabolomics. J Chromatogr B 817:67–76CrossRefGoogle Scholar
  35. 35.
    Ernst RR, Bodenhausen G, Wokaun A (1990) Principles of nuclear magnetic resonance in one and two dimensions. Oxford University Press, OxfordGoogle Scholar
  36. 36.
    Goldman M (1991) Quantum description of high-resolution NMR in liquids. Oxford University Press, OxfordGoogle Scholar
  37. 37.
    Kovacs H, Moskau D, Spraul M (2005) Cryogenically cooled probes – a leap in NMR technology. Prog Nucl Magn Reson Spectrosc 46:131–155CrossRefGoogle Scholar
  38. 38.
    Prince WS (1999) Water signal suppression in NMR spectroscopy. Annu Rep NMR Spectrosc 38:289–354CrossRefGoogle Scholar
  39. 39.
    Potts BC, Deese AJ, Stevens GJ, Reily MD, Robertson DG, Theiss J (2001) NMR of biofluids and pattern recognition: assessing the impact of NMR parameters on the principal component analysis of urine from rat and mouse. J Pharm Biomed Anal 26:463–476CrossRefPubMedGoogle Scholar
  40. 40.
    Schlotterbeck G, Ross A, Dieterle F, Senn H (2006) Metabolic profiling technologies for biomarker discovery in biomedicine and drug development. Pharmacogenomics 7:1055–1075CrossRefPubMedGoogle Scholar
  41. 41.
    Ross A, Schlotterbeck G, Dieterle F, Senn H (2007) NMR spectroscopy techniques for application in metabonomics. In: Lindon JC, Nicholson JK, Holmes E (eds) The handbook of metabonomics and metabolomics. Elsevier, Amsterdam, pp 55–112CrossRefGoogle Scholar
  42. 42.
    Chen JH, Singer S (2007) High-resolution magic angle spinning NMR spectroscopy. In: Lindon JC, Nicholson JK, Holmes E (eds) The handbook of metabonomics and metabolomics. Elsevier, Amsterdam, pp 113–148CrossRefGoogle Scholar
  43. 43.
    Keun HC, Beckonert O, Griffin JL, Richter C, Moskau D, Lindon JC, Nicholson JK (2002) Cryogenic probe 13C NMR spectroscopy of urine for metabonomic studies. Anal Chem 74:4588–4593CrossRefPubMedGoogle Scholar
  44. 44.
    Boros LG, Brackett DJ, Harrigan GG (2003) Metabolic biomarker and kinase drug target discovery in cancer using stable isotope-based dynamic metabolic profiling (SIDMAP). Curr Cancer Drug Targets 3:445–453CrossRefPubMedGoogle Scholar
  45. 45.
    Ben-Yoseph O, Badar-Goffer RS, Morris PG, Bachelard HS (1993) Glycerol 3-phosphate and lactate as indicators of the cerebral cytoplasmic redox state in severe and mild hypoxia respectively: a 13C- and 31P-NMR study. Biochem J 291:915–919CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Hoult DI (1976) Solvent peak saturation with single phase and quadrature Fourier transformation. J Magn Reson 21:337–347Google Scholar
  47. 47.
    Kumar A, Ernst RR, Wüthrich K (1980) A two-dimensional nuclear Overhauser enhancement (2D NOE) experiment for the elucidation of complete proton-proton cross-relaxation networks in biological macromolecules. Biochem Biophys Res Commun 95:1–6CrossRefPubMedGoogle Scholar
  48. 48.
    Ogg RJ, Kingsley PB, Taylor JS (1994) WET, a T1- and B1-insensitive water-suppression method for in vivo localized 1H NMR spectroscopy. J Magn Reson 104B:1–10CrossRefGoogle Scholar
  49. 49.
    Lenz EM, Bright J, Wilson ID, Morgan SR, Nash AFP (2003) A 1H NMR-based metabonomic study of urine and plasma samples obtained from healthy human subjects. J Pharm Biomed Anal 33:1103–1115CrossRefPubMedGoogle Scholar
  50. 50.
    Meiboom S, Gill D (1958) Effects of diffusion on free precession in nuclear magnetic resonance experiments. Rev Sci Instrum 29:688–691CrossRefGoogle Scholar
  51. 51.
    Gibbs SJ, Johnson CS Jr (1991) A PFG NMR experiment for accurate diffusion and flow studies in the presence of eddy currents. J Magn Reson 93:395–402Google Scholar
  52. 52.
    Wider G, Dötsch V, Wüthrich K (1994) Self-compensating pulsed magnetic-field gradients for short recovery times. J Magn Reson 108A:255–258CrossRefGoogle Scholar
  53. 53.
    Morris KF, Johnson CS Jr (1992) Diffusion-ordered two-dimensional nuclear magnetic resonance spectroscopy. J Am Chem Soc 114:3139–3141CrossRefGoogle Scholar
  54. 54.
    Griffin JL, Williams HJ, Sang E, Nicholson JK (2001) Abnormal lipid profile of dystrophic cardiac tissue as demonstrated by one- and two-dimensional magic-angle spinning 1H NMR spectroscopy. Magn Reson Med 46:249–255CrossRefPubMedGoogle Scholar
  55. 55.
    Garrod S, Humpfer E, Spraul M et al (1999) High-resolution magic angle spinning 1H NMR spectroscopic studies on intact rat renal cortex and medulla. Magn Reson Med 41:1108–1118CrossRefPubMedGoogle Scholar
  56. 56.
    Dumas ME, Canlet C, André F, Vercauteren J, Paris A (2002) Metabonomic assessment of physiological disruptions using 1H-13C HMBC-NMR spectroscopy combined with pattern recognition procedures performed on filtered variables. Anal Chem 74:2261–2273CrossRefPubMedGoogle Scholar
  57. 57.
    Günther H (1992) NMR spectroscopy. Wiley, New YorkGoogle Scholar
  58. 58.
    Holmes E, Foxall PJD, Spraul M, Farrant RD, Nicholson JK, Lindon JC (1997) 750 MHz 1H NMR spectroscopy characterization of the complex metabolic pattern of urine from patients with inborn errors of metabolism: 2-hydroxyglutaric aciduria and maple syrup urine disease. J Pharm Biomed Anal 15:1647–1659CrossRefPubMedGoogle Scholar
  59. 59.
    Sweatman BC, Farrant RD, Holmes E, Ghauri FY, Nicholson JK, Lindon JC (1993) 600 MHz 1H-NMR spectroscopy of human cerebrospinal fluid: effects of sample manipulation and assignment of resonances. J Pharm Biomed Anal 11:651–664CrossRefPubMedGoogle Scholar
  60. 60.
    Lynch MJ, Masters J, Pryor JP, Lindon JC, Spraul M, Foxall PJD, Nicholson JK (1994) Ultra high field NMR spectroscopic studies on human seminal fluid, seminal vesicle and prostatic secretions. J Pharm Biomed Anal 12:19–25CrossRefGoogle Scholar
  61. 61.
    Nicholson JK, Foxall PJD (1996) 750 MHz 1H and 1H-l3C NMR spectroscopy of human blood plasma. Anal Chem 67:793–811CrossRefGoogle Scholar
  62. 62.
    Viant MR (2003) Improved methods for the acquisition and interpretation of NMR metabolomic data. Biochem Biophys Res Commun 310:943–948CrossRefPubMedGoogle Scholar
  63. 63.
    Bax A, Davis DG (1985) MLEV-17-based two-dimensional homonuclear magnetization transfer spectroscopy. J Magn Reson 65:355–360Google Scholar
  64. 64.
    Bax A, Freeman R (1981) Investigation of complex networks of spin-spin coupling by two-dimensional NMR. J Magn Reson 44:542–561Google Scholar
  65. 65.
    Derome A, Williamson M (1990) Rapid-pulsing artifacts in double-quantum-filtered COSY. J Magn Reson 88:177–185Google Scholar
  66. 66.
    Ancian B, Bourgeois I, Dauphin JF, Shaw AA (1997) Artifact-free pure absorption PFG-enhanced DQF-COSY spectra including a gradient pulse in the evolution period. J Magn Reson 125A:348–354CrossRefGoogle Scholar
  67. 67.
    Nicholls AW, Holmes E, Lindon JC et al (2001) Metabonomic investigations into hydrazine toxicity in the rat. Chem Res Toxicol 14:975–987CrossRefPubMedGoogle Scholar
  68. 68.
    Liu M, Nicholson JK, Lindon JC (1996) High-resolution diffusion and relaxation edited one- and two-dimensional 1H NMR spectroscopy of biological fluids. Anal Chem 68:3370–3376CrossRefPubMedGoogle Scholar
  69. 69.
    Hoch JC, Stern AS (1997) NMR data processing. Wiley, New YorkGoogle Scholar
  70. 70.
    Traficante DD, Rajabzadeh M (2000) Optimum window function for sensitivity enhancement of NMR signals. Concepts Magn Reson 12:83–101CrossRefGoogle Scholar
  71. 71.
    Lefebvre B, Golotvin S, Schoenbachler L, Beger R, Price P, Megyesi J, Safirstein R (2004) Intelligent bucketing for metabonomics – Part 1, Poster.
  72. 72.
    Forshed J, Schuppe-Koistinen I, Jacobssen SP (2003) Anal Chim Acta 487:189CrossRefGoogle Scholar
  73. 73.
    Stoyanova R, Nicholls AW, Nicholson JK, Lindon JC, Brown TR (2004) Automatic alignment of individual peaks in large high-resolution spectral data sets. J Magn Reson 170:329–335CrossRefPubMedGoogle Scholar
  74. 74.
    Cloarec O, Dumas ME, Trygg J, Craig A, Barton RH, Lindon JC, Nicholson JK, Holmes E (2005) Evaluation of the orthogonal projection on latent structure model limitations caused by chemical shift variability and improved visualization of biomarker changes in 1H NMR spectroscopic metabonomic studies. Anal Chem 77:517–526CrossRefPubMedGoogle Scholar
  75. 75.
    Cloarec O, Dumas ME, Craig A, Barton RH, Trygg J, Hudson J, Blancher C, Gauguier D, Lindon JC, Holmes E, Nicholson J (2005) Statistical total correlation spectroscopy: an exploratory approach for latent biomarker identification from metabolic 1H NMR data sets. Anal Chem 77:1282–1289CrossRefPubMedGoogle Scholar
  76. 76.
    Holmes E, Foxall PJD, Nicholson JK, Neild GH, Brown SM, Beddell CR, Sweatman BC, Rahr E, Lindon JC, Spraul M, Neidig P (1994) Automatic data reduction and pattern recognition methods for analysis of 1H nuclear magnetic resonance spectra of human urine from normal and pathological states. Anal Biochem 220:284–296CrossRefPubMedGoogle Scholar
  77. 77.
    Fauler G, Leis HJ, Huber E, Schellauf C, Kerbl R, Urban C, Gleispach H (1994) Determination of homovanillic acid and vanillylmandelic acid in neuroblastoma screening by stable isotope dilution GC-MS. J Mass Spectrom 32:507–514CrossRefGoogle Scholar
  78. 78.
  79. 79.
    Shockcor JP, Holmes E (2002) Metabonomic applications in toxicity screening and disease diagnosis. Curr Top Med Chem 2:35–51CrossRefPubMedGoogle Scholar
  80. 80.
    Antti H, Bollard ME, Ebbels T, Keun H, Lindon JC, Nicholson JK, Holmes E (2002) Batch statistical processing of 1H NMR-derived urinary spectral data. J Chemometr 16:461–468CrossRefGoogle Scholar
  81. 81.
    Keun HC, Ebbels TMD, Antti H, Bollard ME, Beckonert O, Holmes E, Lindon JC, Nicholson JK (2003) Improved analysis of multivariate data by variable stability scaling: application to NMR-based metabolic profiling. Anal Chim Acta 490:265–276CrossRefGoogle Scholar
  82. 82.
    Brindle JT, Nicholson JK, Schofield PM, Grainger DJ, Holmes E (2003) Application of chemometrics to 1H NMR spectroscopic data to investigate a relationship between human serum metabolic profiles and hypertension. Analyst 128:32–36CrossRefPubMedGoogle Scholar
  83. 83.
    Dieterle F, Ross A, Schlotterbeck G, Senn H (2006) Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. Anal Chem 78:4281–4290CrossRefPubMedGoogle Scholar
  84. 84.
    Wang G, Hsieh Y, Korfmacher WA (2005) Comparison of atmospheric pressure chemical ionization, electrospray ionization, and atmospheric pressure photoionization for the determination of cyclosporin a in rat plasma. Anal Chem 77:541–548CrossRefPubMedGoogle Scholar
  85. 85.
    Want EJ, Nordström A, Morita H, Siuzdak G (2007) From exogenous to endogenous: the inevitable imprint of mass spectrometry in metabolomics. J Proteome Res 6:459–468CrossRefPubMedGoogle Scholar
  86. 86.
    Idborg H, Zamani L, Edlund PO, Schuppe-Koistinen I, Jacobsson SP (2005) Metabolic fingerprinting of rat urine by LC/MS Part 1. Analysis by hydrophilic interaction liquid chromatography–electrospray ionization mass spectrometry. J Chromatogr B 828:9–13CrossRefGoogle Scholar
  87. 87.
    Pham-Tuan H, Kaskavelis L, Daykin CA, Janssen HG (2003) Method development in high-performance liquid chromatography for high-throughput profiling and metabonomic studies of biofluid samples. J Chromatogr B 789:283–301CrossRefGoogle Scholar
  88. 88.
    Dunn W, Ellis DI (2005) Metabolomics: current analytical platforms and methodologies. Trends Anal Chem 24(4):285–294CrossRefGoogle Scholar
  89. 89.
    Ackermann BL, Hale JE, Duffin KL (2006) The role of mass spectrometry in biomarker discovery and measurement. Curr Drug Metab 7:525–539CrossRefPubMedGoogle Scholar
  90. 90.
    Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917CrossRefPubMedGoogle Scholar
  91. 91.
    Peña-Alvarez A, Díaz L, Medina A, Labastida C, Capella S, Vera LE (2004) Characterization of three Agave species by gas chromatography and solid-phase microextraction-gas chromatography-mass spectrometry. J Chromatogr A 1027:131–136CrossRefPubMedGoogle Scholar
  92. 92.
    Le Belle JE, Harris NG, Williams SR, Bhakoo KK (2002) A comparison of cell and tissue extraction techniques using high-resolution 1H-NMR spectroscopy. NMR Biomed 15:37–44CrossRefPubMedGoogle Scholar
  93. 93.
    Gullberg J, Jonsson P, Nordström A, Sjöström M, Moritz T (2004) Design of experiments: an efficient strategy to identify factors influencing extraction and derivatization of Arabidopsis thaliana samples in metabolomics studies with gas chromatography/mass spectrometry. Anal Biochem 331:283–295CrossRefPubMedGoogle Scholar
  94. 94.
    Schröder NW, Schombel U, Heine H, Göbel UB, Zähringer U, Schumann RR (2003) Acylated cholesteryl galactoside as a novel immunogenic motif in Borrelia burgdorferi sensu stricto. J Biol Chem 278:33645–33653CrossRefPubMedGoogle Scholar
  95. 95.
    Katajamaa M, Oresic M (2007) Data processing for mass spectrometry-based metabolomics. J Chromatogr A 1158:318–328CrossRefPubMedGoogle Scholar
  96. 96.
    Cloarec O, Campbell A, Tseng LH, Braumann U, Spraul M, Scarfe G, Weaver R, Nicholson JK (2007) Virtual chromatographic resolution enhancement in cryoflow LC-NMR experiments via statistical total correlation spectroscopy. Anal Chem 79:3304–3311CrossRefPubMedGoogle Scholar
  97. 97.
    Lindon JC, Nicholson JK (1999) NMR spectroscopy of biofluids. In: Webb GA (ed) Annual reports in NMR spectroscopy, vol 38. Academic Press, London, pp 2–78Google Scholar
  98. 98.
    Weckwerth W, Morgenthal K (2005) Metabolomics: from pattern recognition to biological interpretation. Drug Discov Today 10:1551–1558CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Alexander Amberg
    • 1
  • Björn Riefke
    • 2
    Email author
  • Götz Schlotterbeck
    • 3
  • Alfred Ross
    • 4
  • Hans Senn
    • 5
  • Frank Dieterle
    • 6
  • Matthias Keck
    • 7
  1. 1.Preclinical SafetySanofi R&DHattersheimGermany
  2. 2.Investigational Toxicology, Metabolic Profiling and Clinical PathologyBayer Pharma AGBerlinGermany
  3. 3.School of Life Sciences, Institute for Chemistry and BioanalyticsUniversity of Applied Sciences, Northwestern SwitzerlandMuttenzSwitzerland
  4. 4.Roche Pharmaceutical Research and Early Development, Pharmaceutical SciencesRoche Innovation Center Basel, F. Hoffmann-La Roche LtdBaselSwitzerland
  5. 5.Heythrop College UCL, Kensington SquareLondon W85HNUK
  6. 6.New Products and MedicalNear Patient Testing, NovartisBaselSwitzerland
  7. 7.Analytical Development 1Bayer Pharma AGWupperalGermany

Personalised recommendations