Advertisement

Target Safety Assessment: Strategies and Resources

  • Richard J. BrennanEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1641)

Abstract

An in-depth evaluation of target safety is an invaluable resource throughout drug discovery and development. The goal of a target safety evaluation is to identify potential unintended adverse consequences of target modulation, and to propose a risk evaluation and mitigation strategy to shepherd compounds through the discovery and development pipeline, to confirm and characterize unavoidable on-target toxicities in a timely manner to assist in early program advancement decisions, and to anticipate, monitor, and manage potential clinical adverse events. The role of an experienced discovery toxicologist in synthesizing the available information into an actionable set of recommendations for a safety evaluation strategy is critical to its successful application in early discovery programs. This chapter presents a summary of some of the information types and sources that should be investigated, and approaches that can be taken to generate an early assessment of potential safety liabilities.

Key words

Drug target In silico Safety assessment 

References

  1. 1.
    Waring MJ, Arrowsmith J, Leach AR et al (2015) An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat Rev Drug Discov 14(7):475–486CrossRefPubMedGoogle Scholar
  2. 2.
    Guengerich FP (2011) Mechanisms of drug toxicity and relevance to pharmaceutical development. Drug Metab Pharmacokinet 26(1):3–14CrossRefPubMedGoogle Scholar
  3. 3.
    Dogné JM, Hanson J, Supuran C, Pratico D (2006) Coxibs and cardiovascular side-effects: from light to shadow. Curr Pharm Des 12(8):971–975CrossRefPubMedGoogle Scholar
  4. 4.
    Sun SX, Lee KY, Bertram CT, Goldstein JL (2007) Withdrawal of COX-2 selective inhibitors rofecoxib and valdecoxib: impact on NSAID and gastroprotective drug prescribing and utilization. Curr Med Res Opin 23(8):1859–1866CrossRefPubMedGoogle Scholar
  5. 5.
    Liu S, Kurzrock R (2014) Toxicity of targeted therapy: implications for response and impact of genetic polymorphisms. Cancer Treat Rev 40(7):883–891CrossRefPubMedGoogle Scholar
  6. 6.
    Liu S, Kurzrock R (2015) Understanding toxicities of targeted agents: implications for anti-tumor activity and management. Semin Oncol 42(6):863–875CrossRefPubMedGoogle Scholar
  7. 7.
    Small HY, Montezano AC, Rios FJ, Savoia C, Touyz RM (2014) Hypertension due to antiangiogenic cancer therapy with vascular endothelial growth factor inhibitors: understanding and managing a new syndrome. Can J Cardiol 30(5):534–543CrossRefPubMedGoogle Scholar
  8. 8.
    Brown GR, Hem V, Katz KS et al (2015) Gene: a gene-centered information resource at NCBI. Nucleic Acids Res 43(Database issue):D36–D42CrossRefPubMedGoogle Scholar
  9. 9.
    Gene Ontology Consortium (2008) The Gene Ontology project in 2008. Nucleic Acids Res 36(Database issue):D440–D444Google Scholar
  10. 10.
    du Plessis L, Škunca N, Dessimoz C (2011) The what, where, how and why of gene ontology—a primer for bioinformaticians. Brief Bioinform 12(6):723–735CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Wu C, Orozco C, Boyer J et al (2009) BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources. Genome Biol 10(11):R130CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Fagerberg L, Hallström BM, Oksvold P et al (2013) Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics 13(2):397–406CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Croft D, Mundo AF, Haw R et al (2014) The Reactome pathway knowledgebase. Nucleic Acids Res 42(Database issue):D472–D477CrossRefPubMedGoogle Scholar
  14. 14.
    Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M (2010) KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res 38(Database issue):D355–D360CrossRefPubMedGoogle Scholar
  15. 15.
    Grondin CJ, Davis AP, Wiegers TC et al (2016) Advancing exposure science through chemical data curation and integration in the Comparative Toxicogenomics Database. Environ Health Perspect 124(10):1592–1599CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Cerami EG, Gross BE, Demir E et al (2011) Pathway commons, a web resource for biological pathway data. Nucleic Acids Res 39(Database issue):D685–D690CrossRefPubMedGoogle Scholar
  17. 17.
    Catlett NL, Bargnesi AJ, Ungerer S et al (2013) Reverse causal reasoning: applying qualitative causal knowledge to the interpretation of high-throughput data. BMC Bioinformatics 14:340CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Amberger JS, Bocchini CA, Schiettecatte F, Scott AF, Hamosh A (2015) OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res 43(Database issue):D789–D798CrossRefPubMedGoogle Scholar
  19. 19.
    Eppig JT, Richardson JE, Kadin JA et al (2015) Mouse Genome Database: from sequence to phenotypes and disease models. Genesis 53(8):458–473CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Rossi A, Kontarakis Z, Gerri C et al (2015) Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature 524(7564):230–233CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.SanofiWalthamUSA

Personalised recommendations