Skip to main content

Recombinase-Mediated Cassette Exchange Using Adenoviral Vectors

  • Protocol
  • First Online:
Site-Specific Recombinases

Abstract

Site-specific recombinases are important tools for the modification of mammalian genomes. In conjunction with viral vectors, they can be utilized to mediate site-specific gene insertions in animals and in cell lines which are difficult to transfect. Here we describe a method for the generation and analysis of an adenovirus vector supporting a recombinase-mediated cassette exchange reaction and discuss the advantages and limitations of this approach.

The original chapter was corrected: The affiliation of Dr. Andreas Kolb is University of Aberdeen, Foresterhill and not University of Foresterhill as stated originally in the EPUB version.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coates CJ, Kaminski JM, Summers JB et al (2005) Site-directed genome modification: derivatives of DNA-modifying enzymes as targeting tools. Trends Biotechnol 23:407–419

    Article  CAS  PubMed  Google Scholar 

  2. Turan S, Zehe C, Kuehle J et al (2013) Recombinase-mediated cassette exchange (RMCE)—a rapidly-expanding toolbox for targeted genomic modifications. Gene 515:1–27

    Article  CAS  PubMed  Google Scholar 

  3. Doudna JA, Charpentier E (2014) The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096–1258096

    Article  PubMed  Google Scholar 

  4. Kolb AF, Coates CJ, Kaminski JM et al (2005) Site-directed genome modification: nucleic acid and protein modules for targeted integration and gene correction. Trends Biotechnol 23:399–406

    Article  CAS  PubMed  Google Scholar 

  5. Proudfoot C, McPherson AL, Kolb AF et al (2011) Zinc finger recombinases with adaptable DNA sequence specificity. PLoS One 6:e19537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ousterout DG, Gersbach CA (2016) The development of TALE nucleases for biotechnology. Methods Mol Biol 1338:27–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kolb AF (2001) Selection-marker-free modification of the murine β-casein gene using a lox2722 site. Anal Biochem 290:260–271

    Article  CAS  PubMed  Google Scholar 

  8. Gaj T, Sirk SJ, Barbas CF (2014) Expanding the scope of site-specific recombinases for genetic and metabolic engineering. Biotechnol Bioeng 111:1

    Article  CAS  PubMed  Google Scholar 

  9. Loonstra A, Vooijs M, Beverloo HB et al (2001) Growth inhibition and DNA damage induced by Cre recombinase in mammalian cells. PNAS 98:9209–9214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Malla S, Dafhnis-Calas F, Brookfield JFY et al (2005) Rearranging the centromere of the human Y chromosome with phiC31 integrase. Nucleic Acids Res 33:6101–6113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sorrell DA, Robinson CJ, Smith J-A et al (2010) Recombinase mediated cassette exchange into genomic targets using an adenovirus vector. Nucleic Acids Res 38:e123–e123

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lassnig C, Kolb AF, Strobl B et al (2005) Studying human pathogens in animal models: fine tuning the humanized mouse. Transgenic Res 14:803–806

    Article  CAS  PubMed  Google Scholar 

  13. Soriano P (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 21:70–71

    Article  CAS  PubMed  Google Scholar 

  14. Shmerling D, Danzer CP, Mao X et al (2005) Strong and ubiquitous expression of transgenes targeted into the beta-actin locus by Cre/lox cassette replacement. Genesis 42:229–235

    Article  CAS  PubMed  Google Scholar 

  15. Robinson C, Kolb AF (2009) Analysis of mammary specific gene locus regulation in differentiated cells derived by somatic cell fusion. Exp Cell Res 315:508–522

    Article  CAS  PubMed  Google Scholar 

  16. Buchholz F, Angrand PO, Stewart AF (1998) Improved properties of FLP recombinase evolved by cycling mutagenesis. Nat Biotechnol 16:657–662

    Article  CAS  PubMed  Google Scholar 

  17. Buchholz F, Stewart AF (2001) Alteration of Cre recombinase site specificity by substrate-linked protein evolution. Nat Biotechnol 19:1047–1052

    Article  CAS  PubMed  Google Scholar 

  18. Voziyanov Y, Konieczka JH, Stewart AF et al (2003) Stepwise manipulation of DNA specificity in Flp recombinase: progressively adapting Flp to individual and combinatorial mutations in its target site. J Mol Biol 326:65–76

    Article  CAS  PubMed  Google Scholar 

  19. Magin TM, McWhir J, Melton DW (1992) A new mouse embryonic stem cell line with good germ line contribution and gene targeting frequency. Nucleic Acids Res 20:3795–3796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Price J, Turner D, Cepko C (1987) Lineage analysis in the vertebrate nervous system by retrovirus-mediated gene transfer. PNAS 84:156–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Graham FL, Smiley J, Russell WC et al (1977) Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 36:59–72

    Article  CAS  PubMed  Google Scholar 

  22. Pfeifer A, Ikawa M, Dayn Y et al (2002) Transgenesis by lentiviral vectors: lack of gene silencing in mammalian embryonic stem cells and preimplantation embryos. PNAS 99:2140–2145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mao Y, Yan R, Li A et al (2015) Lentiviral vectors mediate long-term and high efficiency transgene expression in HEK 293T cells. Int J Med Sci 12:407–415

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the BBSRC (Gene Technologies underpinning Health Care #12599; CASE studentship BB/J012343/1), the Genomia Seed Fund, and the Hannah Development Fund.

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas F. Kolb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Kolb, A.F. et al. (2017). Recombinase-Mediated Cassette Exchange Using Adenoviral Vectors. In: Eroshenko, N. (eds) Site-Specific Recombinases. Methods in Molecular Biology, vol 1642. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7169-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7169-5_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7167-1

  • Online ISBN: 978-1-4939-7169-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics