Skip to main content

Production of Minicircle DNA Vectors Using Site-Specific Recombinases

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1642))

Abstract

Minicircle DNA vectors are plasmid derivatives free of bacterial elements. These vectors are mostly provided from common plasmids via recombination by site-specific recombinases in E. coli. Absence of bacterial backbone in minicircle vectors results in high-level and persistent expression of transgene in comparison with conventional plasmids and provides promising vehicles for gene therapy and vaccination. Here we describe the production of replicative minicircle DNA vectors using the PBAD/araC system expressing ΦC31 integrase in E. coli.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Chen ZY, Riu E, He C-Y et al (2008) Silencing of episomal transgene expression in liver by plasmid bacterial backbone DNA is independent of CpG methylation. Mol Ther 16:548–556

    Article  CAS  PubMed  Google Scholar 

  2. Kay MA (2011) State-of-the-art gene-based therapies: the road ahead. Nat Rev Genet 12:316–328

    Article  CAS  PubMed  Google Scholar 

  3. Gill D, Pringle I, Hyde S (2009) Progress and prospects: the design and production of plasmid vectors. Gene Ther 16:165–171

    Article  CAS  PubMed  Google Scholar 

  4. Lu J, Zhang F, Xu S et al (2012) The extragenic spacer length between the 5′ and 3′ ends of the transgene expression cassette affects transgene silencing from plasmid-based vectors. Mol Ther 20(11):2111–2119. doi:10.1038/mt.2012.65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Klinman DM (2004) Immunotherapeutic uses of CpG oligodeoxynucleotides. Nat Rev Immunol 4:249–259

    Article  CAS  PubMed  Google Scholar 

  6. Dong Y, Aied A, Li J et al (2013) An in vitro approach for production of non-scar minicircle DNA vectors. J Biotechnol 166:84–87

    Article  CAS  PubMed  Google Scholar 

  7. Sanei Ata-Abadi N, Dormiani K, Khazaie Y et al (2015) Construction of a new minicircle DNA carrying an enhanced green florescent protein reporter gene for efficient expression into mammalian cell lines. Mol Biol Rep 42:1175–1185

    Article  CAS  PubMed  Google Scholar 

  8. Kay MA, He CY, Chen ZY et al (2010) A robust system for production of minicircle DNA vectors. Nat Biotechnol 28:1287–1289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Darquet A, Cameron B, Wils P et al (1997) A new DNA vehicle for nonviral gene delivery: supercoiled minicircle. Gene Ther 4:1341–1349

    Article  CAS  PubMed  Google Scholar 

  10. Bigger BW, Tolmachov O, Collombet JM et al (2001) An araC-controlled bacterial Cre expression system to produce DNA minicircle vectors for nuclear and mitochondrial gene therapy. J Biol Chem 276:23018–23027

    Article  CAS  PubMed  Google Scholar 

  11. Nehlsen K, Broll S, Bode J et al (2006) Replicating minicircles: generation of nonviral episomes for the efficient modification of dividing cells. Gene Ther Mol Biol 10:233–244

    Google Scholar 

  12. Chen ZY, He CY, Ehrhardt A, Kay MA et al (2003) Minicircle DNA vectors devoid of bacterial DNA result in persistent and high-level transgene expression in vivo. Mol Ther 8:495–500

    Article  CAS  PubMed  Google Scholar 

  13. Jechlinger W, Azimpour Tabrizi C, Lubitz W et al (2004) Minicircle DNA immobilized in bacterial ghosts: in vivo production of safe non-viral DNA delivery vehicles. J Mol Microb Biotech 8:222–231

    Article  Google Scholar 

  14. Chen ZY, He CY, Kay MA (2005) Improved production and purification of minicircle DNA vector free of plasmid bacterial sequences and capable of persistent transgene expression in vivo. Hum Gene Ther 16:126–131

    Article  CAS  PubMed  Google Scholar 

  15. Kobelt D, Schleef M, Schmeer M et al (2013) Performance of high quality minicircle DNA for in vitro and in vivo gene transfer. Mol Biotechnol 53:80–89

    Article  CAS  PubMed  Google Scholar 

  16. Forde GM, Ghose S, Slater NK et al (2006) LacO-lacI interaction in affinity adsorption of plasmid DNA. Biotechnol Bioeng 95:67–75

    Article  CAS  PubMed  Google Scholar 

  17. Ghose S, Forde GM et al (2004) Affinity adsorption of plasmid DNA. Biotechnol Prog 20:841–850

    Article  CAS  PubMed  Google Scholar 

  18. Hou XH, Guo XY, Chen Y et al (2015) Increasing the minicircle DNA purity using an enhanced triplex DNA technology to eliminate DNA contaminants. Mol Ther Methods Clin Dev 1:14062. doi:10.1038/mtm.2014.62

    Article  PubMed  PubMed Central  Google Scholar 

  19. Argyros O, Wong SP, Fedonidis C et al (2011) Development of S/MAR minicircles for enhanced and persistent transgene expression in the mouse liver. J Mol Med 89:515–529

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nafiseh Sanei Ata-abadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Ata-abadi, N.S., Rezaei, N., Dormiani, K., Nasr-Esfahani, M.H. (2017). Production of Minicircle DNA Vectors Using Site-Specific Recombinases. In: Eroshenko, N. (eds) Site-Specific Recombinases. Methods in Molecular Biology, vol 1642. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7169-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7169-5_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7167-1

  • Online ISBN: 978-1-4939-7169-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics