Skip to main content

Multipart DNA Assembly Using Site-Specific Recombinases from the Large Serine Integrase Family

  • Protocol
  • First Online:
Site-Specific Recombinases

Abstract

Assembling multiple DNA fragments into functional plasmids is an important and often rate-limiting step in engineering new functions in living systems. Bacteriophage integrases are enzymes that carry out efficient recombination reactions between short, defined DNA sequences known as att sites. These DNA splicing reactions can be used to assemble large numbers of DNA fragments into a functional circular plasmid in a method termed serine integrase recombinational assembly (SIRA). The resulting DNA assemblies can easily be modified by further recombination reactions catalyzed by the same integrase in the presence of its recombination directionality factor (RDF). Here we present a set of protocols for the overexpression and purification of bacteriophage ϕC31 and Bxb1 integrase and RDF proteins, their use in DNA assembly reactions, and subsequent modification of the resulting DNA assemblies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Craig NL (2015) A moveable feast: an introduction to mobile DNA. In: Craig NL, Chandler M, Gellert M, Lambowitz A, Rice PA, Sandmeyer SB (eds) Mobile DNA III. ASM Press, Washington, DC, pp 3–39

    Chapter  Google Scholar 

  2. Grindley ND, Whiteson KL, Rice PA (2006) Mechanisms of site-specific recombination. Annu Rev Biochem 75:567–605

    Article  CAS  PubMed  Google Scholar 

  3. Jayaram M (2015) An overview of tyrosine site-specific recombination: from an Flp perspective. In: Craig NL, Chandler M, Gellert M, Lambowitz A, Rice PA, Sandmeyer SB (eds) Mobile DNA III. ASM Press, Washington, DC, pp 43–71

    Google Scholar 

  4. Stark WM (2015) The serine recombinases. In: Craig NL, Chandler M, Gellert M, Lambowitz A, Rice PA, Sandmeyer SB (eds) Mobile DNA III. ASM Press, Washington, DC, pp 73–89

    Google Scholar 

  5. Smith MC (2015) Phage-encoded serine integrases and other large serine recombinases. Microbiol Spectr 3(4) doi:10.1128/microbiolspec.MDNA3-0059-2014

  6. Kim AI, Ghosh P, Aaron MA, Bibb LA, Jain S, Hatfull GF (2003) Mycobacteriophage Bxb1 integrates into the Mycobacterium smegmatis groEL1 gene. Mol Microbiol 50(2):463–473

    Article  CAS  PubMed  Google Scholar 

  7. Thorpe HM, Smith MC (1998) In vitro site-specific integration of bacteriophage DNA catalyzed by a recombinase of the resolvase/invertase family. Proc Natl Acad Sci U S A 95(10):5505–5510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ghosh P, Wasil LR, Hatfull GF (2006) Control of phage Bxb1 excision by a novel recombination directionality factor. PLoS Biol 4(6):e186

    Article  PubMed  PubMed Central  Google Scholar 

  9. Khaleel T, Younger E, McEwan AR, Varghese AS, Smith MC (2011) A phage protein that binds ϕC31 integrase to switch its directionality. Mol Microbiol 80(6):1450–1463

    Article  CAS  PubMed  Google Scholar 

  10. Colloms SD, Merrick CA, Olorunniji FJ, Stark WM, Smith MC, Osbourn A, Keasling JD, Rosser SJ (2014) Rapid metabolic pathway assembly and modification using serine integrase site-specific recombination. Nucleic Acids Res 42(4):e23

    Article  CAS  PubMed  Google Scholar 

  11. Rowley PA, Smith MC, Younger E, Smith MC (2008) A motif in the C-terminal domain of phiC31 integrase controls the directionality of recombination. Nucleic Acids Res 36(12):3879–3891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Olorunniji FJ, Rosser S, Smith MC, Colloms SD, Stark WM (Submitted for Publication) Serine integrases fused to their recombination directionality factors promote efficient reverse-direction DNA site-specific recombination. Nucleic Acids Res

    Google Scholar 

  13. Pace CN, Vajdos F, Fee L, Grimsley G, Gray T (1995) How to measure and predict the molar absorption coefficient of a protein. Protein Sci 4(11):2411–2423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean D. Colloms .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Olorunniji, F.J., Merrick, C., Rosser, S.J., Smith, M.C.M., Stark, W.M., Colloms, S.D. (2017). Multipart DNA Assembly Using Site-Specific Recombinases from the Large Serine Integrase Family. In: Eroshenko, N. (eds) Site-Specific Recombinases. Methods in Molecular Biology, vol 1642. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7169-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7169-5_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7167-1

  • Online ISBN: 978-1-4939-7169-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics