Skip to main content

Identification and Analysis of WG/GW ARGONAUTE-Binding Domains

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1640))

Abstract

WG/GW domains recruit ARGONAUTE (AGO) proteins to distinct silencing effector complexes using combinations of just two amino acids: tryptophan (W) and glycine (G), forming a wide arsenal of highly simplified interaction surfaces. These unstructured domains exhibit very low sequence identity and excessive length polymorphism, which makes identification of new AGO-binding proteins a challenging task as they escape detection with standard sequence comparison-based methods (e.g., BLAST, HMMER).

In this chapter, we explain the use of tools for prediction of AGO-binding WG/GW domains in protein sequences. We also show how to computationally explore an up-to-date information about AGO-interacting proteins and discover new properties of WG/GW domains. Finally, we encourage readers to explore the game-like web application for in silico designing/modifying AGO-binding sequences as well as modeling mutagenesis experiments and predicting their potential effect on AGO-binding activity.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Zielezinski A, Karlowski WM (2015) Integrative data analysis indicates an intrinsic disordered domain character of Argonaute-binding motifs. Bioinformatics 31(3):332–339. doi:10.1093/bioinformatics/btu666

    Article  CAS  PubMed  Google Scholar 

  2. Azevedo J, Garcia D, Pontier D, Ohnesorge S, Yu A, Garcia S, Braun L, Bergdoll M, Hakimi MA, Lagrange T, Voinnet O (2010) Argonaute quenching and global changes in dicer homeostasis caused by a pathogen-encoded GW repeat protein. Genes Dev 24(9):904–915. doi:10.1101/gad.1908710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Giner A, Lakatos L, Garcia-Chapa M, Lopez-Moya JJ, Burgyan J (2010) Viral protein inhibits RISC activity by argonaute binding through conserved WG/GW motifs. PLoS Pathog 6(7):e1000996. doi:10.1371/journal.ppat.1000996

    Article  PubMed  PubMed Central  Google Scholar 

  4. Szabó EZ, Manczinger M, Goblos A, Kemeny L, Lakatos L (2012) Switching on RNA silencing suppressor activity by restoring argonaute binding to a viral protein. J Virol 86(15):8324–8327. doi:10.1128/JVI.00627-12

    Article  PubMed  PubMed Central  Google Scholar 

  5. de Ronde D, Pasquier A, Ying S, Butterbach P, Lohuis D, Kormelink R (2014) Analysis of tomato spotted wilt virus NSs protein indicates the importance of the N-terminal domain for avirulence and RNA silencing suppression. Mol Plant Pathol 15(2):185–195. doi:10.1111/mpp.12082

    Article  PubMed  Google Scholar 

  6. Aqil M, Naqvi AR, Bano AS, Jameel S (2013) The HIV-1 Nef protein binds argonaute-2 and functions as a viral suppressor of RNA interference. PLoS One 8(9):e74472. doi:10.1371/journal.pone.0074472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Karlowski WM, Zielezinski A, Carrere J, Pontier D, Lagrange T, Cooke R (2010) Genome-wide computational identification of WG/GW Argonaute-binding proteins in Arabidopsis. Nucleic Acids Res 38(13):4231–4245. doi:10.1093/nar/gkq162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Till S, Lejeune E, Thermann R, Bortfeld M, Hothorn M, Enderle D, Heinrich C, Hentze MW, Ladurner AG (2007) A conserved motif in Argonaute-interacting proteins mediates functional interactions through the Argonaute PIWI domain. Nat Struct Mol Biol 14(10):897–903. doi:10.1038/nsmb1302

    Article  CAS  PubMed  Google Scholar 

  9. El-Shami M, Pontier D, Lahmy S, Braun L, Picart C, Vega D, Hakimi MA, Jacobsen SE, Cooke R, Lagrange T (2007) Reiterated WG/GW motifs form functionally and evolutionarily conserved ARGONAUTE-binding platforms in RNAi-related components. Genes Dev 21(20):2539–2544. doi:10.1101/gad.451207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. He XJ, Hsu YF, Zhu S, Wierzbicki AT, Pontes O, Pikaard CS, Liu HL, Wang CS, Jin H, Zhu JK (2009) An effector of RNA-directed DNA methylation in arabidopsis is an ARGONAUTE 4- and RNA-binding protein. Cell 137(3):498–508. doi:10.1016/j.cell.2009.04.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zielezinski A, Karlowski WM (2015) Early origin and adaptive evolution of the GW182 protein family, the key component of RNA silencing in animals. RNA Biol 12(7):761–770. doi:10.1080/15476286.2015.1051302

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gibbings D, Leblanc P, Jay F, Pontier D, Michel F, Schwab Y, Alais S, Lagrange T, Voinnet O (2012) Human prion protein binds Argonaute and promotes accumulation of microRNA effector complexes. Nat Struct Mol Biol 19(5):517–524., S511. doi:10.1038/nsmb.2273

    Article  CAS  PubMed  Google Scholar 

  13. UniProt C (2015) UniProt: a hub for protein information. Nucleic Acids Res 43(Database issue):D204–D212. doi:10.1093/nar/gku989

    Google Scholar 

  14. Pruitt KD, Tatusova T, Brown GR, Maglott DR (2012) NCBI reference sequences (RefSeq): current status, new features and genome annotation policy. Nucleic Acids Res 40(Database issue):D130–D135. doi:10.1093/nar/gkr1079

    Article  CAS  PubMed  Google Scholar 

  15. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, Salazar GA, Tate J, Bateman A (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44(D1):D279–D285. doi:10.1093/nar/gkv1344

    Article  PubMed  Google Scholar 

  16. Mitchell A, Chang HY, Daugherty L, Fraser M, Hunter S, Lopez R, McAnulla C, McMenamin C, Nuka G, Pesseat S, Sangrador-Vegas A, Scheremetjew M, Rato C, Yong SY, Bateman A, Punta M, Attwood TK, Sigrist CJ, Redaschi N, Rivoire C, Xenarios I, Kahn D, Guyot D, Bork P, Letunic I, Gough J, Oates M, Haft D, Huang H, Natale DA, Wu CH, Orengo C, Sillitoe I, Mi H, Thomas PD, Finn RD (2015) The InterPro protein families database: the classification resource after 15 years. Nucleic Acids Res 43(Database issue):D213–D221. doi:10.1093/nar/gku1243

    Article  PubMed  Google Scholar 

  17. Zielezinski A, Karlowski WM (2011) Agos—a universal web tool for GW Argonaute-binding domain prediction. Bioinformatics 27(9):1318–1319. doi:10.1093/bioinformatics/btr128

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech M. Karlowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Zielezinski, A., Karlowski, W.M. (2017). Identification and Analysis of WG/GW ARGONAUTE-Binding Domains. In: Carbonell, A. (eds) Plant Argonaute Proteins. Methods in Molecular Biology, vol 1640. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7165-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7165-7_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7164-0

  • Online ISBN: 978-1-4939-7165-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics