Skip to main content

Pathophysiology of Alpha-1 Antitrypsin Deficiency Liver Disease

  • Protocol
  • First Online:
Alpha-1 Antitrypsin Deficiency

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1639))

Abstract

Classical alpha-1 antitrypsin (a1AT) deficiency is an autosomal recessive disease associated with an increased risk of liver disease in adults and children, and with lung disease in adults (Teckman and Jain, Curr Gastroenterol Rep 16(1):367, 2014). The vast majority of the liver disease is associated with homozygosity for the Z mutant allele, the so-called PIZZ. These homozygous individuals synthesize large quantities of a1AT mutant Z protein in the liver, but the mutant protein folds improperly during biogenesis and approximately 85% of the molecules are retained within the hepatocytes rather than appropriately secreted. The resulting low, or “deficient,” serum level leaves the lungs vulnerable to inflammatory injury from uninhibited neutrophil proteases. Most of the mutant Z protein molecules retained within hepatocytes are directed into intracellular proteolysis pathways, but some molecules remain in the endoplasmic reticulum for long periods of time. Some of these molecules adopt an unusual aggregated or “polymerized” conformation (Duvoix et al., Rev Mal Respir 31(10):992–1002, 2014). It is thought that these intracellular polymers trigger a cascade of intracellular injury which can lead to end-organ liver injury including chronic hepatitis, cirrhosis, and hepatocellular carcinoma (Lindblad et al., Hepatology 46(4):1228–1235, 2007). The hepatocytes with the largest accumulations of mutant Z polymers undergo apoptotic death and possibly other death mechanisms. This intracellular death cascade appears to involve ER stress, mitochondrial depolarization, and caspase cleavage, and is possibly linked to autophagy and redox injury. Cells with lesser burdens of mutant Z protein proliferate to maintain the liver cell mass. This chronic cycle of cell death and regeneration activates hepatic stellate cells and initiates the process of hepatic fibrosis. Cirrhosis and hepatocellular carcinoma then result in some patients. Since not all patients with the same homozygous PIZZ genotype develop end-stage disease, it is hypothesized that there is likely to be a strong influence of genetic and environmental modifiers of the injury cascade and of the fibrotic response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Teckman JH, Jain A (2014) Advances in alpha-1-antitrypsin deficiency liver disease. Curr Gastroenterol Rep 16(1):367. doi:10.1007/s11894-013-0367-8

    Article  PubMed  Google Scholar 

  2. Duvoix A, Roussel BD, Lomas DA (2014) Molecular pathogenesis of alpha-1-antitrypsin deficiency. Rev Mal Respir 31(10):992–1002. doi:10.1016/j.rmr.2014.03.015

    Article  CAS  PubMed  Google Scholar 

  3. Lindblad D, Blomenkamp K, Teckman J (2007) Alpha-1-antitrypsin mutant Z protein content in individual hepatocytes correlates with cell death in a mouse model. Hepatology 46(4):1228–1235. doi:10.1002/hep.21822

    Article  CAS  PubMed  Google Scholar 

  4. Teckman JH, Gilmore R, Perlmutter DH (2000) Role of ubiquitin in proteasomal degradation of mutant alpha(1)-antitrypsin Z in the endoplasmic reticulum. Am J Physiol Gastrointest Liver Physiol 278(1):G39–G48

    CAS  PubMed  Google Scholar 

  5. Teckman JH, Rosenthal P, Abel R, Bass LM, Michail S, Murray KF, Rudnick DA, Thomas DW, Spino C, Arnon R, Hertel PM, Heubi J, Kamath BM, Karnsakul W, Loomes KM, Magee JC, Molleston JP, Romero R, Shneider BL, Sherker AH, Sokol RJ (2015) Baseline analysis of a young alpha-1-antitrypsin deficiency liver disease cohort reveals frequent portal hypertension. J Pediatr Gastroenterol Nutr 61(1):94–101. doi:10.1097/MPG.0000000000000753

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Teckman JH, Perlmutter DH (2000) Retention of mutant alpha(1)-antitrypsin Z in endoplasmic reticulum is associated with an autophagic response. Am J Physiol Gastrointest Liver Physiol 279(5):G961–G974

    CAS  PubMed  Google Scholar 

  7. Sifers RN (2010) Medicine. Clearing conformational disease. Science 329(5988):154–155. doi:10.1126/science.1192681. 329/5988/154 [pii]

    Article  CAS  PubMed  Google Scholar 

  8. Sifers RN (2013) Resurrecting the protein fold for disease intervention. Chem Biol 20(3):298–300. doi:10.1016/j.chembiol.2013.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Qu D, Teckman JH, Omura S, Perlmutter DH (1996) Degradation of a mutant secretory protein, alpha1-antitrypsin Z, in the endoplasmic reticulum requires proteasome activity. J Biol Chem 271(37):22791–22795

    Article  CAS  PubMed  Google Scholar 

  10. Teckman JH, Perlmutter DH (1996) The endoplasmic reticulum degradation pathway for mutant secretory proteins alpha1-antitrypsin Z and S is distinct from that for an unassembled membrane protein. J Biol Chem 271(22):13215–13220

    Article  CAS  PubMed  Google Scholar 

  11. Perlmutter DH (2011) Alpha-1-antitrypsin deficiency: importance of proteasomal and autophagic degradative pathways in disposal of liver disease-associated protein aggregates. Annu Rev Med 62:333–345. doi:10.1146/annurev-med-042409-151920

    Article  CAS  PubMed  Google Scholar 

  12. Sifers RN (2010) Intracellular processing of alpha1-antitrypsin. Proc Am Thorac Soc 7(6):376–380. doi:10.1513/pats.201001-011AW. 7/6/376 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pastore N, Blomenkamp K, Annunziata F, Piccolo P, Mithbaokar P, Maria Sepe R, Vetrini F, Palmer D, Ng P, Polishchuk E, Iacobacci S, Polishchuk R, Teckman J, Ballabio A, Brunetti-Pierri N (2013) Gene transfer of master autophagy regulator TFEB results in clearance of toxic protein and correction of hepatic disease in alpha-1-anti-trypsin deficiency. EMBO Mol Med 5(3):397–412. doi:10.1002/emmm.201202046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kaushal S, Annamali M, Blomenkamp K, Rudnick D, Halloran D, Brunt EM, Teckman JH (2010) Rapamycin reduces intrahepatic alpha-1-antitrypsin mutant Z protein polymers and liver injury in a mouse model. Exp Biol Med (Maywood) 235(6):700–709. doi:10.1258/ebm.2010.009297. 235/6/700 [pii]

    Article  CAS  Google Scholar 

  15. Hidvegi T, Ewing M, Hale P, Dippold C, Beckett C, Kemp C, Maurice N, Mukherjee A, Goldbach C, Watkins S, Michalopoulos G, Perlmutter DH (2010) An autophagy-enhancing drug promotes degradation of mutant alpha1-antitrypsin Z and reduces hepatic fibrosis. Science 329(5988):229–232. doi:10.1126/science.1190354. science.1190354 [pii]

    Article  CAS  PubMed  Google Scholar 

  16. Marcus NY, Blomenkamp K, Ahmad M, Teckman JH (2012) Oxidative stress contributes to liver damage in a murine model of alpha-1-antitrypsin deficiency. Exp Biol Med (Maywood) 237(10):1163–1172. doi:10.1258/ebm.2012.012106

    Article  CAS  Google Scholar 

  17. Teckman JH (2013) Liver disease in alpha-1 antitrypsin deficiency: current understanding and future therapy. COPD 10(Suppl 1):35–43. doi:10.3109/15412555.2013.765839

    Article  PubMed  Google Scholar 

  18. Teckman JH, Mangalat N (2015) Alpha-1 antitrypsin and liver disease: mechanisms of injury and novel interventions. Expert Rev Gastroenterol Hepatol 9(2):261–268. doi:10.1586/17474124.2014.943187

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey H. Teckman M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Teckman, J.H., Blomenkamp, K.S. (2017). Pathophysiology of Alpha-1 Antitrypsin Deficiency Liver Disease. In: Borel, F., Mueller, C. (eds) Alpha-1 Antitrypsin Deficiency . Methods in Molecular Biology, vol 1639. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7163-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7163-3_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7161-9

  • Online ISBN: 978-1-4939-7163-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics