Skip to main content

Informatics Approaches for Predicting, Understanding, and Testing Cancer Drug Combinations

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1636))

Abstract

Making cancer treatment more effective is one of the grand challenges in our health care system. However, many drugs have entered clinical trials but so far showed limited efficacy or induced rapid development of resistance. We urgently need multi-targeted drug combinations, which shall selectively inhibit the cancer cells and block the emergence of drug resistance. The book chapter focuses on mathematical and computational tools to facilitate the discovery of the most promising drug combinations to improve efficacy and prevent resistance. Data integration approaches that leverage drug-target interactions, cancer molecular features, and signaling pathways for predicting, understanding, and testing drug combinations are critically reviewed.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Hoadley KA (2014) Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell 158:929–944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vogelstein B (2013) Cancer genome landscapes. Science 339:1546–1558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Prahallad A, Sun C, Huang S, Di Nicolantonio F, Salazar R, Zecchin D, Beijersbergen RL, Bardelli A, Bernards R (2012) Unresponsiveness of colon cancer to BRAF (V600E) inhibition through feedback activation of EGFR. Nature 483:100–103

    Article  CAS  PubMed  Google Scholar 

  4. Cox AD, Fesik SW, Kimmelman AC, Luo J, Der CJ (2014) Drugging the undruggable RAS: mission possible? Nat Rev Drug Discov 13:828–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sanchez-Garcia F, Villagrasa P, Matsui J, Kotliar D, Castro V, Akavia UD, Chen BJ, Saucedo-Cuevas L, Rodriguez Barrueco R, Llobet-Navas D, Silva JM, Pe'er D (2014) Integration of genomic data enables selective discovery of breast cancer drivers. Cell 159:1461–1475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pagliarini R, Shao W, Sellers WR (2015) Oncogene addiction: pathways of therapeutic response, resistance, and road maps toward a cure. EMBO Rep 16:280–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wagle N, Emery C, Berger MF, Davis MJ, Sawyer A, Pochanard P, Kehoe SM, Johannessen CM, Macconaill LE, Hahn WC, Meyerson M, Garraway LA (2011) Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. J Clin Oncol 29:3085–3096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Knight ZA, Lin H, Shokat KM (2010) Targeting the cancer kinome through polypharmacology. Nat Rev Cancer 10:130–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Maemondo M, Inoue A, Kobayashi K, Sugawara S, Oizumi S, Isobe H, Gemma A, Harada M, Yoshizawa H, Kinoshita I, Fujita Y, Okinaga S, Hirano H, Yoshimori K, Harada T, Ogura T, Ando M, Miyazawa H, Tanaka T, Saijo Y, Hagiwara K, Morita S, Nukiwa T, North-East Japan Study Group (2010) Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med 362:2380–2388

    Article  CAS  PubMed  Google Scholar 

  10. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, Dummer R, Garbe C, Testori A, Maio M, Hogg D, Lorigan P, Lebbe C, Jouary T, Schadendorf D, Ribas A, O'Day SJ, Sosman JA, Kirkwood JM, Eggermont AM, Dreno B, Nolop K, Li J, Nelson B, Hou J, Lee RJ, Flaherty KT, McArthur GA, BRIM-3 Study Group (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364:2507–2516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Imming P, Sinning C, Meyer A (2006) Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov 5:821–834

    Article  CAS  PubMed  Google Scholar 

  12. Hopkins AL (2008) Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 4:682–690

    Article  CAS  PubMed  Google Scholar 

  13. Al-Lazikani B, Banerji U, Workman P (2012) Combinatorial drug therapy for cancer in the post-genomic era. Nat Biotechnol 30:679–692

    Article  CAS  PubMed  Google Scholar 

  14. Tang J, Aittokallio T (2014) Network pharmacology strategies toward multi-target anticancer therapies: from computational models to experimental design principles. Curr Pharm Des 20:20–36

    PubMed Central  Google Scholar 

  15. Molinelli EJ, Korkut A, Wang W, Miller ML, Gauthier NP, Jing X, Kaushik P, He Q, Mills G, Solit DB, Pratilas CA, Weigt M, Braunstein A, Pagnani A, Zecchina R, Sander C (2013) Perturbation biology: inferring signaling networks in cellular systems. PLoS Comput Biol 9:e1003290

    Article  PubMed  PubMed Central  Google Scholar 

  16. Goltsov A, Langdon SP, Goltsov G, Harrison DJ, Bown J (2014) Customizing the therapeutic response of signaling networks to promote antitumor responses by drug combinations. Front Oncol 4:13

    Article  PubMed  PubMed Central  Google Scholar 

  17. Brough R, Frankum JR, Costa-Cabral S, Lord CJ, Ashworth A (2011) Searching for synthetic lethality in cancer. Curr Opin Genet Dev 21:34–41

    Article  CAS  PubMed  Google Scholar 

  18. Latosińska JN, Latosińska M (2013) Anticancer drug discovery—from serendipity to rational design. In: Hany El-Shemy (ed) Drug discovery. InTech. ISBN: 978-953-51-0906-8

    Google Scholar 

  19. Forbes SA, Beare D, Gunasekaran P, Leung K, Bindal N, Boutselakis H, Ding M, Bamford S, Cole C, Ward S, Kok CY, Jia M, De T, Teague JW, Stratton MR, McDermott U, Campbell PJ (2015) COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res 43:D805–D811

    Article  CAS  PubMed  Google Scholar 

  20. Tan AC, Ryall KA, Huang PH (2016) Expanding the computational toolbox for interrogating cancer kinomes. Pharmacogenomics 17:95–97

    Article  CAS  PubMed  Google Scholar 

  21. Ryall KA, Tan AC (2015) Systems biology approaches for advancing the discovery of effective drug combinations. J Cheminform 7:7

    Article  PubMed  PubMed Central  Google Scholar 

  22. Xie L, Xie L, Kinnings SL, Bourne PE (2012) Novel computational approaches to polypharmacology as a means to define responses to individual drugs. Annu Rev Pharmacol Toxicol 52:361–379

    Article  CAS  PubMed  Google Scholar 

  23. Bento AP, Gaulton A, Hersey A, Bellis LJ, Chambers J, Davies M, Krüger FA, Light Y, Mak L, McGlinchey S, Nowotka M, Papadatos G, Santos R, Overington JP (2014) The ChEMBL bioactivity database: an update. Nucleic Acids Res 42:D1083–D1090

    Article  CAS  PubMed  Google Scholar 

  24. Wang Y, Xiao J, Suzek TO, Zhang J, Wang J, Zhou Z, Han L, Karapetyan K, Dracheva S, Shoemaker BA, Bolton E, Gindulyte A, Bryant SH (2012) PubChem’s bioassay database. Nucleic Acids Res 40:D400–D412

    Article  CAS  PubMed  Google Scholar 

  25. Tang J, Szwajda A, Shakyawar S, Xu T, Hintsanen P, Wennerberg K, Aittokallio T (2014) Making sense of large-scale kinase inhibitor bioactivity data sets: a comparative and integrative analysis. J Chem Inf Model 54:735–743

    Article  CAS  PubMed  Google Scholar 

  26. Wang Y, Ma H (2015) Protein kinase profiling assays: a technology review. Drug Discov Today Technol 18:1–8

    Article  PubMed  Google Scholar 

  27. Fabian MA, Biggs WH 3rd, Treiber DK, Atteridge CE, Azimioara MD, Benedetti MG, Carter TA, Ciceri P, Edeen PT, Floyd M, Ford JM, Galvin M, Gerlach JL, Grotzfeld RM, Herrgard S, Insko DE, Insko MA, Lai AG, Lélias JM, Mehta SA, Milanov ZV, Velasco AM, Wodicka LM, Patel HK, Zarrinkar PP, Lockhart DJ (2005) A small molecule-kinase interaction map for clinical kinase inhibitors. Nat Biotechnol 23:329–336

    Article  CAS  PubMed  Google Scholar 

  28. Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT, Chan KW, Ciceri P, Davis MI, Edeen PT, Faraoni R, Floyd M, Hunt JP, Lockhart DJ, Milanov ZV, Morrison MJ, Pallares G, Patel HK, Pritchard S, Wodicka LM, Zarrinkar PP (2008) A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol 26:127–132

    Article  CAS  PubMed  Google Scholar 

  29. Zarrinkar PP, Gunawardane RN, Cramer MD, Gardner MF, Brigham D, Belli B, Karaman MW, Pratz KW, Pallares G, Chao Q, Sprankle KG, Patel HK, Levis M, Armstrong RC, James J, Bhagwat SS (2009) AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML). Blood 114:2984–2992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP (2011) Comprehensive analysis of kinase inhibitor selectivity. Nat Biotechnol 29:1046–1051

    Article  CAS  PubMed  Google Scholar 

  31. Metz JT, Johnson EF, Soni NB, Merta PJ, Kifle L, Hajduk PJ (2011) Navigating the kinome. Nat Chem Biol 7:200–202

    Article  CAS  PubMed  Google Scholar 

  32. Anastassiadis T, Deacon SW, Devarajan K, Ma H, Peterson JR (2011) Comprehensive assay of kinase catalytic activity reveals features of kinase inhibitor selectivity. Nat Biotechnol 29:1039–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Duong-Ly KC, Devarajan K, Liang S, Horiuchi KY, Wang Y, Ma H, Peterson JR (2016) Kinase inhibitor profiling reveals unexpected opportunities to inhibit disease-associated mutant kinases. Cell Rep 14:772–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rudolf AF, Skovgaard T, Knapp S, Jensen LJ, Berthelsen J (2014) A comparison of protein kinases inhibitor screening methods using both enzymatic activity and binding affinity determination. PLoS One 9:e98800

    Article  PubMed  PubMed Central  Google Scholar 

  35. Taipale M, Krykbaeva I, Whitesell L, Santagata S, Zhang J, Liu Q, Gray NS, Lindquist S (2013) Chaperones as thermodynamic sensors of drug-target interactions reveal kinase inhibitor specificities in living cells. Nat Biotechnol 31:630–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Patricelli MP, Nomanbhoy TK, Wu J, Brown H, Zhou D, Zhang J, Jagannathan S, Aban A, Okerberg E, Herring C, Nordin B, Weissig H, Yang Q, Lee JD, Gray NS, Kozarich JW (2011) In situ kinase profiling reveals functionally relevant properties of native kinases. Chem Biol 18:699–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pemovska T, Johnson E, Kontro M, Repasky GA, Chen J, Wells P, Cronin CN, McTigue M, Kallioniemi O, Porkka K, Murray BW, Wennerberg K (2015) Axitinib effectively inhibits BCR-ABL1 (T315I) with a distinct binding conformation. Nature 519:102–105

    Article  CAS  PubMed  Google Scholar 

  38. Chambers J, Davies M, Gaulton A, Hersey A, Velankar S, Petryszak R, Hastings J, Bellis L, McGlinchey S, Overington JP (2013) UniChem: a unified chemical structure cross-referencing and identifier tracking system. J Cheminform 5:3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gilson MK, Liu T, Baitaluk M, Nicola G, Hwang L, Chong J (2016) BindingDB in 2015: a public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res 44:D1045–D1053

    Article  CAS  PubMed  Google Scholar 

  40. Southan C, Sharman JL, Benson HE, Faccenda E, Pawson AJ, Alexander SP, Buneman OP, Davenport AP, McGrath JC, Peters JA, Spedding M, Catterall WA, Fabbro D, Davies JA, NC-IUPHAR (2016) The IUPHAR/BPS guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. Nucleic Acids Res 44:D1054–D1068

    Article  CAS  PubMed  Google Scholar 

  41. Cao DS, Zhou GH, Liu S, Zhang LX, Xu QS, He M, Liang YZ (2013) Large-scale prediction of human kinase-inhibitor interactions using protein sequences and molecular topological structures. Anal Chim Acta 792:10–18

    Article  CAS  PubMed  Google Scholar 

  42. Huang C, Zhang R, Chen Z, Jiang Y, Shang Z, Sun P, Zhang X, Li X (2010) Predict potential drug targets from the ion channel proteins based on SVM. J Theor Biol 262:750–756

    Article  CAS  PubMed  Google Scholar 

  43. Hu J, Li Y, Yang JY, Shen HB, Yu DJ (2016) GPCR-drug interactions prediction using random forest with drug-association-matrix-based post-processing procedure. Comput Biol Chem 60:59–71

    Article  CAS  PubMed  Google Scholar 

  44. Oak N, Jayaraman VK (2014) Identification of ligand binding pockets on nuclear receptors by machine learning methods. Protein Pept Lett 21:808–814

    Article  CAS  PubMed  Google Scholar 

  45. Ding H, Takigawa I, Mamitsuka H, Zhu S (2014) Similarity-based machine learning methods for predicting drug-target interactions: a brief review. Brief Bioinform 15:734–747

    Article  PubMed  Google Scholar 

  46. Nidhi GM, Davies JW, Jenkins JL (2006) Prediction of biological targets for compounds using multiple-category Bayesian models trained on chemogenomics databases. J Chem Inf Model 46:1124–1133

    Article  CAS  PubMed  Google Scholar 

  47. Pogodin PV, Lagunin AA, Filimonov DA, Poroikov VV (2015) PASS targets: ligand-based multi-target computational system based on a public data and naive Bayes approach. SAR QSAR Environ Res 26:783–793

    Article  CAS  PubMed  Google Scholar 

  48. Stanton DT (2012) QSAR and QSPR model interpretation using partial least squares (PLS) analysis. Curr Comput Aided Drug Des 8:107–127

    Article  CAS  PubMed  Google Scholar 

  49. Park K, Kim D (2011) Drug-drug relationship based on target information: application to drug target identification. BMC Syst Biol 5:S12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu YT, Li Y, Huang ZF, Xu ZJ, Yang Z, Chen ZX, Chen KX, Shi JY, Zhu WL (2014) Multi-algorithm and multi-model based drug target prediction and web server. Acta Pharmacol Sin 35:419–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Qu XA, Rajpal DK (2014) Applications of connectivity map in drug discovery and development. Drug Discov Today 17:23–24

    Google Scholar 

  52. Bansal M, Yang J, Karan C, Menden MP, Costello JC, Tang H, Xiao G, Li Y, Allen J, Zhong R, Chen B, Kim M, Wang T, Heiser LM, Realubit R, Mattioli M, Alvarez MJ, Shen Y, Gallahan D, Singer D, Saez-Rodriguez J, Xie Y, Stolovitzky G, Califano A, NCI-DREAM Community (2014) A community computational challenge to predict the activity of pairs of compounds. Nat Biotechnol 32:1213–1222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yang J, Tang H, Li Y, Zhong R, Wang T, Wong S, Xiao G, Xie Y (2015) DIGRE: drug-induced genomic residual effect model successful prediction of multidrug effects. CPT Pharmacometrics Syst Pharmacol 4:e1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lee JH, Kim DG, Bae TJ, Rho K, Kim JT, Lee JJ, Jang Y, Kim BC, Park KM, Kim S (2012) CDA: combinatorial drug discovery using transcriptional response modules. PLoS One 7(8):e42573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Miller ML, Molinelli EJ, Nair JS, Sheikh T, Samy R, Jing X, He Q, Korkut A, Crago AM, Singer S, Schwartz GK, Sander C (2013) Drug synergy screen and network modeling in dedifferentiated liposarcoma identifies CDK4 and IGF1R as synergistic drug targets. Sci Signal 6:ra85

    PubMed  PubMed Central  Google Scholar 

  56. Morris MK, Saez-Rodriguez J, Sorger PK, Lauffenburger DA (2010) Logic-based models for the analysis of cell signaling networks. Biochemistry 49:3216–3224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pal R, Berlow N et al (2012) A kinase inhibition map approach for tumor sensitivity prediction and combination therapy design for targeted drugs. Pac Symp Biocomput:351–362

    Google Scholar 

  58. Tang J, Karhinen L, Xu T, Szwajda A, Yadav B, Wennerberg K, Aittokallio T (2013) Target inhibition networks: predicting selective combinations of druggable targets to block cancer survival pathways. PLoS Comput Biol 9:e1003226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pemovska T, Kontro M, Yadav B, Edgren H, Eldfors S, Szwajda A, Almusa H, Bespalov MM, Ellonen P, Elonen E, Gjertsen BT, Karjalainen R, Kulesskiy E, Lagström S, Lehto A, Lepistö M, Lundán T, Majumder MM, Marti JM, Mattila P, Murumägi A, Mustjoki S, Palva A, Parsons A, Pirttinen T, Rämet ME, Suvela M, Turunen L, Västrik I, Wolf M, Knowles J, Aittokallio T, Heckman CA, Porkka K, Kallioniemi O, Wennerberg K (2013) Individualized systems medicine strategy to tailor treatments for patients with chemorefractory acute myeloid leukemia. Cancer Discov 3:1416–1429

    Article  CAS  PubMed  Google Scholar 

  60. He L, Wennerberg K, Aittokallio T, Tang J (2015) TIMMA-R: an R package for predicting synergistic multi-targeted drug combinations in cancer cell lines or patient-derived sample. Bioinformatics 31:1866–1868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tang J, Wennerberg K, Aittokallio T (2015) What is synergy? The Saariselkä agreement revisited. Front Pharmacol 6:181

    Article  PubMed  PubMed Central  Google Scholar 

  62. Berenbaum MC (1989) What is synergy? Pharmacol Rev 41:93–141

    CAS  PubMed  Google Scholar 

  63. Loewe S (1953) The problem of synergism and antagonism of combined drugs. Arzneimittelforschung 3:285–290

    CAS  PubMed  Google Scholar 

  64. Bliss CI (1939) The toxicity of poisons applied jointly. Ann Appl Biol 26:585–615

    Article  CAS  Google Scholar 

  65. Borisy AA, Elliott PJ, Hurst NW, Lee MS, Lehar J, Price ER, Serbedzija G, Zimmermann GR, Foley MA, Stockwell BR, Keith CT (2003) Systematic discovery of multicomponent therapeutics. Proc Natl Acad Sci U S A 100:7977–7982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lehár J, Zimmermann GR, Krueger AS, Molnar RA, Ledell JT, Heilbut AM, Short GF 3rd, Giusti LC, Nolan GP, Magid OA, Lee MS, Borisy AA, Stockwell BR, Keith CT (2007) Chemical combination effects predict connectivity in biological systems. Mol Syst Biol 3:80

    Article  PubMed  PubMed Central  Google Scholar 

  67. Lehár J, Krueger AS, Avery W, Heilbut AM, Johansen LM, Price ER, Rickles RJ, Short GF 3rd, Staunton JE, Jin X, Lee MS, Zimmermann GR, Borisy AA (2009) Synergistic drug combinations tend to improve therapeutically relevant selectivity. Nat Biotechnol 27:659–666

    Article  PubMed  PubMed Central  Google Scholar 

  68. Cokol M, Chua HN, Tasan M, Mutlu B, Weinstein ZB, Suzuki Y, Nergiz ME, Costanzo M, Baryshnikova A, Giaever G, Nislow C, Myers CL, Andrews BJ, Boone C, Roth FP (2011) Systematic exploration of synergistic drug pairs. Mol Syst Biol 7:544

    Article  PubMed  PubMed Central  Google Scholar 

  69. Fitzgerald JB, Schoeberl B, Nielsen UB, Sorger PK (2006) Systems biology and combination therapy in the quest for clinical efficacy. Nat Chem Biol 2:458–466

    Article  CAS  PubMed  Google Scholar 

  70. Tan X, Hu L, Luquette LJ 3rd, Gao G, Liu Y, Qu H, Xi R, Lu ZJ, Park PJ, Elledge SJ (2012) Systematic identification of synergistic drug pairs targeting HIV. Nat Biotechnol 30:1125–1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mathews Griner LA, Guha R, Shinn P, Young RM, Keller JM, Liu D, Goldlust IS, Yasgar A, McKnight C, Boxer MB, Duveau DY, Jiang JK, Michael S, Mierzwa T, Huang W, Walsh MJ, Mott BT, Patel P, Leister W, Maloney DJ, Leclair CA, Rai G, Jadhav A, Peyser BD, Austin CP, Martin SE, Simeonov A, Ferrer M, Staudt LM, Thomas CJ (2014) High-throughput combinatorial screening identifies drugs that cooperate with ibrutinib to kill activated B-cell–like diffuse large B-cell lymphoma cells. Proc Natl Acad Sci U S A 111:2349–2354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Jansen G, Lee AY, Epp E, Fredette A, Surprenant J, Harcus D, Scott M, Tan E, Nishimura T, Whiteway M, Hallett M, Thomas DY (2009) Chemogenomic profiling predicts antifungal synergies. Mol Syst Biol 5:338

    Article  PubMed  PubMed Central  Google Scholar 

  73. Yadav B, Wennerberg K, Aittokallio T, Tang J (2015) Searching for drug synergy in complex dose-response landscapes using an interaction potency model. Comput Struct Biotechnol J 13:504–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Greco WR, Bravo G, Parsons JC (1995) The search for synergy: a critical review from a response surface perspective. Pharmacol Rev 47:331–385

    CAS  PubMed  Google Scholar 

  75. Chou TC (2010) Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res 70:440–446

    Article  CAS  PubMed  Google Scholar 

  76. Lee JJ, Kong M, Ayers GD, Lotan R (2007) Interaction index and different methods for determining drug interaction in combination therapy. J Biopharm Stat 17:461–480

    Article  CAS  PubMed  Google Scholar 

  77. Tallarida RJ (2006) An overview of drug combination analysis with isobolograms. J Pharmacol Exp Ther 319:1–7

    Article  CAS  PubMed  Google Scholar 

  78. Zhao W, Sachsenmeier K, Zhang L, Sult E, Hollingsworth RE, Yang H (2014) A new bliss independence model to analyze drug dombination data. J Biomol Screen 19:817–821

    Article  PubMed  Google Scholar 

  79. Almohaimeed B, Donev AN (2014) Experimental designs for drug combination studies. Comput Stat Data Anal 71:1077–1087

    Article  Google Scholar 

  80. Crystal AS, Shaw AT, Sequist LV, Friboulet L, Niederst MJ, Lockerman EL, Frias RL, Gainor JF, Amzallag A, Greninger P, Lee D, Kalsy A, Gomez-Caraballo M, Elamine L, Howe E, Hur W, Lifshits E, Robinson HE, Katayama R, Faber AC, Awad MM, Ramaswamy S, Mino-Kenudson M, Iafrate AJ, Benes CH, Engelman JA (2014) Patient-derived models of acquired resistance can identify effective drug combinations for cancer. Science 19:1480–1486

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Research Council Starting Grant project DrugComb (grant number: 716063 to J.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Tang, J. (2017). Informatics Approaches for Predicting, Understanding, and Testing Cancer Drug Combinations. In: Tan, AC., Huang, P. (eds) Kinase Signaling Networks. Methods in Molecular Biology, vol 1636. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7154-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7154-1_30

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7152-7

  • Online ISBN: 978-1-4939-7154-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics