Skip to main content

Dissecting Kinase Effector Signaling Using the RapRTAP Methodology

  • Protocol
  • First Online:
Book cover Kinase Signaling Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1636))

Abstract

Kinases are involved in a broad spectrum of cell behaviors. A single kinase can interact with different ligands each eliciting a specific cellular response. Dissecting downstream signaling pathways of kinases is a key step to understanding physiological and pathological cell process. However, directing kinase activity to specific substrates remains challenging. Here, we present a new tool to selectively activate a kinase in a specific protein complex in living cells. This technology uses a rapamycin-inducible kinase activation coupled to interaction with FKBP12-binding domain (FRB) tagged protein. Here, we demonstrate application of this method by targeting Src to either p130Cas or FAK and discriminating cell mophodynamic changes downstream each of these signaling complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hunter T (1995) Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell 80:225–236

    Article  CAS  PubMed  Google Scholar 

  2. Bishop AC, Shah K, Liu Y et al (1998) Design of allele-specific inhibitors to probe protein kinase signaling. Curr Biol 8:257–266

    Article  CAS  PubMed  Google Scholar 

  3. a Weiss W, Taylor SS, Shokat KM (2007) Recognizing and exploiting differences between RNAi and small-molecule inhibitors. Nat Chem Biol 3:739–744

    Article  Google Scholar 

  4. Thomas SM, Brugge JS (1997) Cellular functions regulated by Src family kinases. Annu Rev Cell Dev Biol 13:513–609

    Article  CAS  PubMed  Google Scholar 

  5. Frame MC (2002) Src in cancer: deregulation and consequences for cell behaviour. Biochim Biophys Acta 1602:114–130

    CAS  PubMed  Google Scholar 

  6. Playford MP, Schaller MD (2004) The interplay between Src and integrins in normal and tumor biology. Oncogene 23:7928–7946

    Article  CAS  PubMed  Google Scholar 

  7. Brown MT, Cooper JA (1996) Regulation, substrates and functions of src. Biochim Biophys Acta 1287:121–149

    PubMed  Google Scholar 

  8. Karginov AV, Ding F, Kota P et al (2010) Engineered allosteric activation of kinases in living cells. Nat Biotechnol 28:743–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Karginov AV, Hahn KM (2011) Allosteric activation of kinases: design and application of rapr kinases. Curr Protoc Cell Biol Chapter 14:Unit14.13

    Google Scholar 

  10. Karginov AV, Tsygankov D, Berginski M et al (2014) Dissecting motility signaling through activation of specific Src-effector complexes. Nat Chem Biol 10:286–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schaller MD, Hildebrand JD, Shannon JD et al (1994) Autophosphorylation of the focal adhesion kinase, pp125FAK, directs SH2-dependent binding of pp60src. Mol Cell Biol 14:1680–1688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nakamoto T, Sakai R, Ozawa K et al (1996) Direct binding of C-terminal region of p130Cas to SH2 and SH3 domains of Src kinase. J Biol Chem 271:8959–8965

    Article  CAS  PubMed  Google Scholar 

  13. Sandhu GS, Precup W, Kline BC (1989) Rapid one-step characterization of recombinant vectors by direct analysis of transformed Escherichia coli colonies. BioTechniques 7:689–690

    CAS  PubMed  Google Scholar 

  14. Tsygankov D, Bilancia CG, Vitriol EA et al (2014) CellGeo: a computational platform for the analysis of shape changes in cells with complex geometries. J Cell Biol 204:443–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Berginski ME, Vitriol EA, Hahn KM et al (2011) High-resolution quantification of focal adhesion spatiotemporal dynamics in living cells. PLoS One 6:e22025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Klaus Hahn for his support and guidance in development of this method. This work was supported by NIH R21 RCA159179A grant and Chicago Biomedical Consortium Pilot Grant to Dr. A. Karginov.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei V. Karginov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Ray, AM., Klomp, J.E., Collins, K.B., Karginov, A.V. (2017). Dissecting Kinase Effector Signaling Using the RapRTAP Methodology. In: Tan, AC., Huang, P. (eds) Kinase Signaling Networks. Methods in Molecular Biology, vol 1636. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7154-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7154-1_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7152-7

  • Online ISBN: 978-1-4939-7154-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics