Skip to main content

Label-Free Phosphoproteomic Approach for Kinase Signaling Analysis

  • Protocol
  • First Online:
Book cover Kinase Signaling Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1636))

Abstract

Phosphoproteomics is a powerful platform for the unbiased profiling of kinase-driven signaling pathways. Quantitation of phosphorylation can be performed by means of either labeling or label-free mass spectrometry (MS) methods. Because of their simplicity and universality, label-free methodology is gaining acceptance and popularity in molecular biology research. Analytical workflows for label-free quantification of phosphorylation, however, need to overcome several hurdles for the technique to be accurate and precise. These include the use of biochemical extraction procedures that efficiently and reproducibly isolate phosphopeptides from complex peptide matrices and an analytical strategy that can cope with missing MS/MS phosphopeptide spectra in a subset of the samples being compared. Testing the accuracy of the developed workflows is an essential prerequisite in the analysis of small molecules by MS, and this is achieved by constructing calibration curves to demonstrate linearity of quantification for each analyte. This level of analytical rigor is rarely shown in large-scale quantification of proteins using either label-based or label-free techniques. In this chapter we show an approach to test linearity of quantification of each phosphopeptide quantified by liquid chromatography (LC)-MS without the need to synthesize standards or label proteins. We further describe the appropriate sample handling techniques required for the reproducible recovery of phosphopeptides and explore the essential algorithmic features that enable the handling of missing MS/MS spectra and thus make label-free data suitable for such analyses. The combined technology described in this chapter expands the applicability of phosphoproteomics to questions not previously tractable with other methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bodenmiller B, Wanka S, Kraft C et al (2010) Phosphoproteomic analysis reveals interconnected system-wide responses to perturbations of kinases and phosphatases in yeast. Sci Signal 3:rs4

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Ficarro SB, Mccleland ML, Stukenberg PT et al (2002) Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat Biotechnol 20:301–305

    Article  CAS  PubMed  Google Scholar 

  3. Gruhler A, Olsen JV, Mohammed S et al (2005) Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Mol Cell Proteomics 4:310–327

    Article  CAS  PubMed  Google Scholar 

  4. Olsen JV, Blagoev B, Gnad F et al (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127:635–648

    Article  CAS  PubMed  Google Scholar 

  5. Rosenqvist H, Ye J, Jensen ON (2011) Analytical strategies in mass spectrometry-based phosphoproteomics. Methods Mol Biol 753:183–213

    Article  CAS  PubMed  Google Scholar 

  6. Thingholm TE, Jensen ON, Larsen MR (2009) Analytical strategies for phosphoproteomics. Proteomics 9:1451–1468

    Article  CAS  PubMed  Google Scholar 

  7. Alcolea MP, Casado P, Rodriguez-Prados JC et al (2012) Phosphoproteomic analysis of leukemia cells under basal and drug-treated conditions identifies markers of kinase pathway activation and mechanisms of resistance. Mol Cell Proteomics 11:453–466

    Article  PubMed  PubMed Central  Google Scholar 

  8. Maurer HH (2012) What is the future of (ultra) high performance liquid chromatography coupled to low and high resolution mass spectrometry for toxicological drug screening? J Chromatogr A 1292:19–24

    Article  PubMed  Google Scholar 

  9. Parkin MC, Turfus SC, Smith NW et al (2008) Detection of ketamine and its metabolites in urine by ultra high pressure liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 876:137–142

    Article  CAS  PubMed  Google Scholar 

  10. Montoya A, Beltran L, Casado P et al (2011) Characterization of a TiO(2) enrichment method for label-free quantitative phosphoproteomics. Methods 54:370–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Casado P, Cutillas PR (2011) A self-validating quantitative mass spectrometry method for assessing the accuracy of high-content phosphoproteomic experiments. Mol Cell Proteomics 10(1):M110.003079

    Article  PubMed  Google Scholar 

  12. Beltran L, Casado P, Rodríguez-Prados J-C et al (2012) Global profiling of protein kinase activities in cancer cells by mass spectrometry. J Proteome 77:492–503

    Article  CAS  Google Scholar 

  13. Casado P, Bilanges B, Rajeeve V et al (2014) Environmental stress affects the activity of metabolic and growth factor signaling networks and induces autophagy markers in MCF7 breast cancer cells. Mol Cell Proteomics 13:836–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Casado P, Rodriguez-Prados JC, Cosulich SC et al (2013) Kinase-substrate enrichment analysis provides insights into the heterogeneity of signaling pathway activation in leukemia cells. Sci Signal 6:rs6

    Article  PubMed  Google Scholar 

  15. Casado P, Alcolea MP, Iorio F et al (2013) Phosphoproteomics data classify hematological cancer cell lines according to tumor type and sensitivity to kinase inhibitors. Genome Biol 14:R37

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wilkes EH, Terfve C, Gribben JG et al (2015) Empirical inference of circuitry and plasticity in a kinase signaling network. Proc Natl Acad Sci U S A 112:7719–7724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rajeeve V, Vendrell I, Wilkes E et al (2014) Cross-species proteomics reveals specific modulation of signaling in cancer and stromal cells by phosphoinositide 3-kinase (PI3K) inhibitors. Mol Cell Proteomics 13:1457–1470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. De Graaf EL, Giansanti P, Altelaar AF et al (2014) Single step enrichment by Ti4+-IMAC and label free quantitation enables in-depth monitoring of phosphorylation dynamics with high reproducibility and temporal resolution. Mol Cell Proteomics 13:2426–2434

    Article  PubMed  PubMed Central  Google Scholar 

  19. Humphrey SJ, Azimifar SB, Mann M (2015) High-throughput phosphoproteomics reveals in vivo insulin signaling dynamics. Nat Biotechnol 33:990–995

    Article  CAS  PubMed  Google Scholar 

  20. Casado P, Cutillas PR (2011) A self-validating quantitative mass spectrometry method for assessing the accuracy of high-content phosphoproteomic experiments. Mol Cell Proteomics 10(M110.003079)

    Google Scholar 

  21. Jensen SS, Larsen MR (2007) Evaluation of the impact of some experimental procedures on different phosphopeptide enrichment techniques. Rapid Commun Mass Spectrom 21:3635–3645

    Article  CAS  PubMed  Google Scholar 

  22. Engholm-Keller K, Larsen MR (2011) Titanium dioxide as chemo-affinity chromatographic sorbent of biomolecular compounds – applications in acidic modification-specific proteomics. J Proteome 75:317–328

    Article  CAS  Google Scholar 

  23. Engholm-Keller K, Hansen TA, Palmisano G et al (2011) Multidimensional strategy for sensitive phosphoproteomics incorporating protein prefractionation combined with SIMAC, HILIC, and TiO(2) chromatography applied to proximal EGF signaling. J Proteome Res 10:5383–5397

    Article  CAS  PubMed  Google Scholar 

  24. Li QR, Ning ZB, Tang JS et al (2009) Effect of peptide-to-TiO(2) beads ratio on phosphopeptide enrichment selectivity. J Proteome Res 8:5375–5381

    Article  CAS  PubMed  Google Scholar 

  25. Kettenbach AN, Gerber SA (2011) Rapid and reproducible single-stage phosphopeptide enrichment of complex peptide mixtures: application to general and phosphotyrosine-specific phosphoproteomics experiments. Anal Chem 83:7635–7644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cutillas PR, Vanhaesebroeck B (2007) Quantitative profile of five murine core proteomes using label-free functional proteomics. Mol Cell Proteomics 6:1560–1573

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Barts and the London Charity and Cancer Research UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro R. Cutillas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Wilkes, E., Cutillas, P.R. (2017). Label-Free Phosphoproteomic Approach for Kinase Signaling Analysis. In: Tan, AC., Huang, P. (eds) Kinase Signaling Networks. Methods in Molecular Biology, vol 1636. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7154-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7154-1_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7152-7

  • Online ISBN: 978-1-4939-7154-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics