Skip to main content

Evaluation of Thermal Stability of RNA Nanoparticles by Temperature Gradient Gel Electrophoresis (TGGE) in Native Condition

  • Protocol
  • First Online:
RNA Nanostructures

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1632))

Abstract

Temperature gradient gel electrophoresis (TGGE) is a powerful tool used to analyze the thermal stabilities of nucleic acids. While TGGE is a decades-old technique, it has recently gained favor in the field of RNA nanotechnology, notably in assessing the thermal stabilities of RNA nanoparticles (NPs). With TGGE, an electrical current and a linear temperature gradient are applied simultaneously to NP-loaded polyacrylamide gel, separating the negatively charged NPs based on their thermal behavior (a more stable RNA complex will remain intact through higher temperature ranges). The linear temperature gradient can be set either perpendicular or parallel to the electrical current, as either will make the NPs undergo a transition from native to denatured conformations. Often, the melting transition is influenced by sequence variations, secondary/tertiary structures, concentrations, and external factors such as the presence of a denaturing agent (e.g., urea), the presence of monovalent or divalent metal ions, and the pH of the solvent. In this chapter, we describe the experimental setup and the analysis of the thermal stability of RNA NPs in native conditions using a modified version of a commercially available TGGE system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. SantaLucia J Jr, Hicks D (2004) The thermodynamics of DNA structural motifs. Annu Rev Biophys Biomol Struct 33:415–440

    Article  CAS  PubMed  Google Scholar 

  2. Chadalavada DM, Bevilacqua PC (2009) Analyzing RNA and DNA folding using temperature gradient gel electrophoresis (TGGE) with application to in vitro selections. Methods Enzymol 468:389–408

    Article  CAS  PubMed  Google Scholar 

  3. Nakano M, Moody EM, Liang J, Bevilacqua PC (2002) Selection for thermodynamically stable DNA tetraloops using temperature gradient gel electrophoresis reveals four motifs: d(cGNNAg), d(cGNABg),d(cCNNGg), and d(gCNNGc). Biochemistry 41:14281–14292

    Article  CAS  PubMed  Google Scholar 

  4. Ellington AD, Szostak JW (1990) Invitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  CAS  PubMed  Google Scholar 

  5. Manzano M, Cocolin L, Iacumin L, Cantoni C, Comi G (2005) A PCR-TGGE (Temperature Gradient Gel Electrophoresis) technique to assess differentiation among enological Saccharomyces cerevisiae strains. Int J Food Microbiol 101:333–339

    Article  CAS  PubMed  Google Scholar 

  6. Van den Bossche A, Van Nevel C, Herman L, Decuypere J, De Smet S, Dierick N, Heyndrickx M (2001) PCR-TGGE: a method for fingerprinting the microbial flora in the small intestine of pigs. Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet 66:359–363

    PubMed  Google Scholar 

  7. Kang J, Harders J, Riesner D, Henco K (1994) TGGE in quantitative PCR of DNA and RNA. Methods Mol Biol 31:229–235

    CAS  PubMed  Google Scholar 

  8. Myers RM, Fischer SG, Lerman LS, Maniatis T (1985) Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel electrophoresis. Nucleic Acids Res 13:3131–3145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Danko P, Kozak A, Podhradsky D, Viglasky V (2005) Analysis of DNA intercalating drugs by TGGE. J Biochem Biophys Methods 65:89–95

    Article  CAS  PubMed  Google Scholar 

  10. Henco K, Harders J, Wiese U, Riesner D (1994) Temperature gradient gel electrophoresis (TGGE) for the detection of polymorphic DNA and RNA. Methods Mol Biol 31:211–228

    CAS  PubMed  Google Scholar 

  11. Sorlie T, Johnsen H, Vu P, Lind GE, Lothe R, Borresen-Dale AL (2005) Mutation screening of the TP53 gene by temporal temperature gradient gel electrophoresis. Methods Mol Biol 291:207–216

    CAS  PubMed  Google Scholar 

  12. Viglasky V (2013) Polyacrylamide temperature gradient gel electrophoresis. Methods Mol Biol 1054:159–171

    Article  CAS  PubMed  Google Scholar 

  13. Binzel DW, Khisamutdinov EF, Guo PX (2014) Entropy-driven one-step formation of Phi29 pRNA 3WJ from three RNA fragments. Biochemistry 53:2221–2231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Khisamutdinov EF, Jasinski DL, Guo P (2014) RNA as a boiling-resistant anionic polymer material to build robust structures with defined shape and stoichiometry. ACS Nano 8:4771–4781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Khisamutdinov EF, Li H, Jasinski DL, Chen J, Fu J, Guo P (2014) Enhancing immunomodulation on innate immunity by shape transition among RNA triangle, square and pentagon nanovehicles. Nucleic Acids Res 42:9996–10004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Severcan I, Geary C, Verzemnieks E, Chworos A, Jaeger L (2009) Square-shaped RNA particles from different RNA folds. Nano Lett 9:1270–1277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Grabow WW, Zakrevsky P, Afonin KA, Chworos A, Shapiro BA, Jaeger L (2011) Self-assembling RNA nanorings based on RNAI/II inverse kissing complexes. Nano Lett 11:878–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Afonin KA, Bindewald E, Yaghoubian AJ, Voss N, Jacovetty E, Shapiro BA, Jaeger L (2010) In vitro assembly of cubic RNA-based scaffolds designed in silico. Nat Nanotechnol 5:676–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Severcan I, Geary C, Chworos A, Voss N, Jacovetty E, Jaeger L (2010) A polyhedron made of tRNAs. Nat Chem 2:772–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Binzel DW, Khisamutdinov EF, Guo PX (2014) Addition to entropy-driven one-step formation of Phi29 pRNA 3WJ from three RNA Fragments. Biochemistry 53:3709

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgment

We thank Seth Abels for proofreading this work and leaving valuable comments. The research was supported by Department of Chemistry BSU start-up funds, Chemistry Research Immersion Summer Program (CRISP) at BSU and Indiana Academy of Science grant # G9000602A to Emil Khisamutdinov.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emil F. Khisamutdinov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Benkato, K., O’Brien, B., Bui, M.N., Jasinski, D.L., Guo, P., Khisamutdinov, E.F. (2017). Evaluation of Thermal Stability of RNA Nanoparticles by Temperature Gradient Gel Electrophoresis (TGGE) in Native Condition. In: Bindewald, E., Shapiro, B. (eds) RNA Nanostructures . Methods in Molecular Biology, vol 1632. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7138-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7138-1_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7137-4

  • Online ISBN: 978-1-4939-7138-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics