Skip to main content

Isolation of Polysomal RNA for Analyzing Stress-Responsive Genes Regulated at the Translational Level in Plants

  • Protocol
  • First Online:
Plant Stress Tolerance

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1631))

Abstract

Alteration of gene expression is an essential mechanism, which allows plants to respond and adapt to adverse environmental conditions. Transcriptome and proteome analyses in plants exposed to abiotic stresses revealed that protein levels are not correlated with the changes in corresponding mRNAs, indicating regulation at translational level is another major regulator for gene expression. Analysis of translatome, which refers to all mRNAs associated with ribosomes, thus has the potential to bridge the gap between transcriptome and proteome. Polysomal RNA profiling and recently developed ribosome profiling (Ribo-seq) are two main methods for translatome analysis at global level. Here, we describe the classical procedure for polysomal RNA isolation by sucrose gradient ultracentrifugation followed by highthroughput RNA-seq to identify genes regulated at translational level. Polysomal RNA can be further used for a variety of downstream applications including Northern blot analysis, qRT-PCR, RNase protection assay, and microarray-based gene expression profiling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. King HA, Gerber AP (2016) Translatome profiling: methods for genome-scale analysis of mRNA translation. Brief Funct Genomics 15:22–31

    PubMed  Google Scholar 

  2. Zupanic A, Meplan C, Grellscheid SN, Mathers JC, Kirkwood TB et al (2014) Detecting translational regulation by change point analysis of ribosome profiling data sets. RNA 20:1507–1518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kuersten S, Radek A, Vogel C, Penalva LO (2013) Translation regulation gets its ‘omics’ moment. Wiley Interdiscip Rev RNA 4:617–630

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Matsuura H, Ishibashi Y, Shinmyo A, Kanaya S, Kato K (2010) Genome-wide analyses of early translational responses to elevated temperature and high salinity in Arabidopsis thaliana. Plant Cell Physiol 51:448–462

    Article  CAS  PubMed  Google Scholar 

  5. Branco-Price C, Kawaguchi R, Ferreira RB, Bailey-Serres J (2005) Genome-wide analysis of transcript abundance and translation in Arabidopsis seedlings subjected to oxygen deprivation. Ann Bot 96:647–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Reynoso MA, Blanco FA, Bailey-Serres J, Crespi M, Zanetti ME (2013) Selective recruitment of mRNAs and miRNAs to polyribosomes in response to rhizobia infection in Medicago truncatula. Plant J 73:289–301

    Article  CAS  PubMed  Google Scholar 

  7. Michel AM, Baranov PV (2013) Ribosome profiling: a Hi-Def monitor for protein synthesis at the genome-wide scale. Wiley Interdiscip Rev RNA 4:473–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Juntawong P, Girke T, Bazin J, Bailey-Serres J (2014) Translational dynamics revealed by genome-wide profiling of ribosome footprints in Arabidopsis. Proc Natl Acad Sci U S A 111:203–212

    Article  Google Scholar 

  9. Beilharz TH, Preiss T (2004) Translational profiling: the genome-wide measure of the nascent proteome. Brief Funct Genomic Proteomic 3:103–111

    Article  CAS  PubMed  Google Scholar 

  10. Arava Y, Boas FE, Brown PO, Herschlag D (2005) Dissecting eukaryotic translation and its control by ribosome density mapping. Nucleic Acids Res 33:2421–2432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Leprivier G, Remke M, Rotblat B, Dubuc A, Mateo AR et al (2013) The eEF2 kinase confers resistance to nutrient deprivation by blocking translation elongation. Cell 153:1064–1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Puckette M, Iyer NJ, Tang Y, Dai XB, Zhao P et al (2012) Differential mRNA translation in Medicago truncatula accessions with contrasting responses to ozone-induced oxidative stress. Mol Plant 5:187–204

    Article  CAS  PubMed  Google Scholar 

  13. Larsson O, Sonenberg N, Nadon R (2010) Identification of differential translation in genome wide studies. Proc Natl Acad Sci U S A 107:21487–21492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Arava Y (2003) Isolation of polysomal RNA for microarray analysis. Methods Mol Biol 224:79–87

    CAS  PubMed  Google Scholar 

  15. Ingolia NT, Brar GA, Rouskin S, McGeachy AM, Weissman JS (2012) The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nat Protoc 7:1534–1550

    Google Scholar 

  16. Baudin-Baillieu A, Hatin I, Legendre R, Namy O (2016) Translation analysis at the genome scale by ribosome profiling. Methods Mol Biol 1361:105–124

    Article  CAS  PubMed  Google Scholar 

  17. Ingolia NT, Ghaemmaghami S, Newman JR, Weissman JS (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324:218–223

    Google Scholar 

  18. Jackson R, Standart N (2015) The awesome power of ribosome profiling. RNA 21:652–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mustroph A, Juntawong P, Bailey-Serres J (2009) Isolation of plant polysomal mRNA by differential centrifugation and ribosome immunopurification methods. Methods Mol Biol 553:109–126

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was partly supported by Starting-up grant of Henan Normal University (5101049470095) and Program for Innovative Research Team in Science and Technology in University of Henan Province (17IRTSTHN017) to YFL. The work in RS laboratory was supported by the Oklahoma Agricultural Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramanjulu Sunkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Li, YF., Mahalingam, R., Sunkar, R. (2017). Isolation of Polysomal RNA for Analyzing Stress-Responsive Genes Regulated at the Translational Level in Plants. In: Sunkar, R. (eds) Plant Stress Tolerance. Methods in Molecular Biology, vol 1631. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7136-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7136-7_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7134-3

  • Online ISBN: 978-1-4939-7136-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics