Skip to main content

ChIP-Seq Analysis for Identifying Genome-Wide Histone Modifications Associated with Stress-Responsive Genes in Plants

  • Protocol
  • First Online:
Plant Stress Tolerance

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1631))

Abstract

Histone modifications represent the crux of epigenetic gene regulation essential for most biological processes including abiotic stress responses in plants. Thus, identification of histone modifications at the genome-scale can provide clues for how some genes are ‘turned-on’ while some others are “turned-off” in response to stress. This chapter details a step-by-step protocol for identifying genome-wide histone modifications associated with stress-responsive gene regulation using chromatin immunoprecipitation (ChIP) followed by sequencing of the DNA (ChIP-seq).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Temel A, Janack B, Humbeck K (2015) Epigenetic regulation in plants. Chichester, John Wiley & Sons, Ltd. doi:10.1002/9780470015902.a0021848

    Book  Google Scholar 

  2. Lauria M, Rossi V (2011) Epigenetic control of gene regulation in plants. Biochim Biophys Acta 1809:369–378

    Article  CAS  PubMed  Google Scholar 

  3. Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  CAS  PubMed  Google Scholar 

  4. Yuna L, Liu X, Luo M, Yang S, Wu K (2013) Involvement of histone dmofications in plant abiotic stress responses. J Int Plant Biol 55:892–901

    Google Scholar 

  5. Grunstein M (1997) Histone acetylation in chromatin structure and transcription. Nature 389:349–352

    Article  CAS  PubMed  Google Scholar 

  6. Zhu J-K (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  8. Juenger T (2013) Natural variation and genetic constraints on drought tolerance. Curr Opin Plant Biol 16:274–281

    Article  CAS  PubMed  Google Scholar 

  9. Zhang X, Clarenz O, Cokus S, Bernatavichute YV, Pellegrini M, Goodrich J, Jacobsen SE (2007) Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis. PLoS Biol 5:e129

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kim JM, To TK, Ishida J, Morosawa T, Kawashima M, Matsui A, Toyoda T, Kimura H, Shinozaki K, Seki M (2008) Alterations of lysine modifications on the histone H3 N-tail under drought stress conditions in Arabidopsis thaliana. Plant Cell Physiol 49:1580–1588

    Article  CAS  PubMed  Google Scholar 

  11. Kwon CS, Lee D, Choi G, Chung W (2009) Histone occupancy-dependent and -independent removal of H3K27 trimethylation at cold-responsive genes in Arabidopsis. Plant J 60:112–121

    Article  CAS  PubMed  Google Scholar 

  12. van Dijk K, Ding Y, Malkaram S, Riethoven JJ, Liu R, Yang J, Laczko P, Chen H, Xia Y, Ladunga I, Avramova Z, Fromm M (2010) Dynamic changes in genome-wide histone H3 lysine 4 methylation patterns in response to dehydration stress in Arabidopsis thaliana. BMC Plant Biol 10:238

    Article  PubMed  PubMed Central  Google Scholar 

  13. Han SK, Wagner D (2014) Role of chromatin in water stress responses in plants. J Exp Bot 65:2785–2799

    Article  CAS  PubMed  Google Scholar 

  14. Tsuji H, Saika H, Tsutsumi N, Hirai A, Nakazono M (2006) Dynamic and reversible changes in histone H3-Lys4 methylation and H3 acetylation occurring at submergence-inducible genes in rice. Plant Cell Physiol 47:995–1003

    Article  CAS  PubMed  Google Scholar 

  15. Song Y, Ji D, Li S, Wang P, Li Q, Xiang F (2012) The dynamic changes of DNA methylation and histone modifications of salt responsive transcription factor genes in soybean. PLoS One 7:e41274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chinnusamy V, Zhu JK (2009) Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol 12:133–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Iyer VR, Horak CE, Scafe CS, Botstein D, Snyder M, Brown PO (2001) Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature 409:533–538

    Article  CAS  PubMed  Google Scholar 

  18. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837

    Article  CAS  PubMed  Google Scholar 

  19. Ren B, Robert F, Wyrick JJ, Aparicio O, Jennings EG, Simon I, Zeitlinger J, Schreiber J, Hannett N, Kanin E et al (2000) Genome-wide location and function of DNA binding proteins. Science 290:2306–2309

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work in RS laboratory was supported by the Oklahoma Center for Advancement of Science and Technology and Oklahoma Agricultural Experiment Station. AM acknowledges the Stevens endowed Chair professorship in Agricultural Biotechnology of DASNR, OSU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramanjulu Sunkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Li, G., Jagadeeswaran, G., Mort, A., Sunkar, R. (2017). ChIP-Seq Analysis for Identifying Genome-Wide Histone Modifications Associated with Stress-Responsive Genes in Plants. In: Sunkar, R. (eds) Plant Stress Tolerance. Methods in Molecular Biology, vol 1631. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7136-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7136-7_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7134-3

  • Online ISBN: 978-1-4939-7136-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics