Skip to main content

Rhizosphere Sampling Protocols for Microbiome (16S/18S/ITS rRNA) Library Preparation and Enrichment for the Isolation of Drought Tolerance-Promoting Microbes

  • Protocol
  • First Online:
Plant Stress Tolerance

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1631))

Abstract

Natural plant microbiomes are abundant and have a remarkably robust composition, both as epiphytes on the plant surface and as endophytes within plant tissues. Microbes in the former “habitat” face limited nutrients and harsh environmental conditions, while those in the latter likely lead a more sheltered existence. The most populous and diverse of these microbiomes are associated with the zone around the plant roots, commonly referred to as the rhizosphere. A majority of recent studies characterize these plant-associated microbiomes by community profiling of bacteria and fungi, using amplicon-based marker genes and next-generation sequencing (NGS). Here, we collate a group of protocols that incorporate current best practices and optimized methodologies for sampling, handling of samples, and rRNA library preparation for variable regions of V5-V6 and V9 of the bacterial 16S ribosomal RNA (rRNA) gene, and the ITS2 region joining the 5.8S and 28S regions of the fungal rRNA gene. Samples collected for such culture-independent analyses can also be used for the actual isolation of microbes of interest, perhaps even those identified by the libraries described above. One group of microbes that holds promise for mediating plant stress incurred by drought are bacteria that are capable of reducing or eliminating the plant’s perception of the stress through degradation of the gaseous plant hormone ethylene, which is abundantly produced in response to drought stimuli. This is accomplished by some types of soil bacteria that can produce the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, which is the immediate precursor to ethylene. Here we provide a high-throughput protocol for screening of ACC deaminase-producing bacteria for the applied purpose of mitigating the impact of plant drought stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Turner TR, James EK, Poole PS (2013) The plant microbiome. Genome Biol 14:209–219

    Article  PubMed  PubMed Central  Google Scholar 

  2. Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486

    Article  CAS  PubMed  Google Scholar 

  3. Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev Microbiol 10:828–840

    Article  CAS  PubMed  Google Scholar 

  4. Beattie GA, Lindow SE (1995) The secret life of foliar bacterial pathogens on leaves. Annu Rev Phytopathol 33:145–172

    Article  CAS  PubMed  Google Scholar 

  5. Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interact 19:827–837

    Article  CAS  PubMed  Google Scholar 

  6. Beneduzi A, Peres D, Vargas LK, Bodanese-Zanettini MH, Passaglia LMP (2008) Evaluation of genetic diversity and plant growth promoting activities of nitrogen-fixing bacilli isolated from rice fields in South Brazil. Appl Soil Ecol 39:311–320

    Article  Google Scholar 

  7. Bakker PA, Berendsen RL, Doornbos RF, Wintermans PC, Pieterse CM (2013) The rhizosphere revisited: root microbiomics. Front Plant Sci 4:165

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hugenholtz P, Goebel BM, Pace NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:4765–4774

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Olsen GJ, Lane DJ, Giovannoni SJ, Pace NR, Stahl DA (1986) Microbial ecology and evolution: a ribosomal RNA approach. Annu Rev Microbiol 40:337–365

    Article  CAS  PubMed  Google Scholar 

  10. Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty NK et al (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci 112:E911–E920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bulgarelli D, Rott M, Schlaeppi K, van Themaat EVL, Ahmadinejad N et al (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91–95

    Article  CAS  PubMed  Google Scholar 

  12. Gohl DM, Vangay P, Garbe J, MacLean A, Hauge A et al (2016) Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies. Nat Biotechnol 34:942–949

    Article  CAS  PubMed  Google Scholar 

  13. Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M et al (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100

    Article  CAS  PubMed  Google Scholar 

  14. Ngumbi E, Kloepper J (2016) Bacterial-mediated drought tolerance: current and future prospects. Appl Soil Ecol 105:109–125

    Article  Google Scholar 

  15. Rolli E, Marasco R, Vigani G, Ettoumi B, Mapelli F et al (2015) Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait. Environ Microbiol 17:316–331

    Article  PubMed  Google Scholar 

  16. Marasco R, Rolli E, Ettoumi B, Vigani G, Mapelli F et al (2012) A drought resistance-promoting microbiome is selected by root system under desert farming. PLoS One 7:e48479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bakker P, Berendsen R, Doornbos R, Wintermans P, Pieterse C (2012) The rhizosphere revisited: root microbiomics. Front Plant Sci 4:165

    Google Scholar 

  18. (2013) Illumina 16S metagenomic sequencing library preparation (Illumina Technical Note 15044223 Rev. A). Illumina. http://support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf

    Google Scholar 

  19. Parada AE, Needham DM, Fuhrman JA (2015) Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol 18:1403–1414

    Article  PubMed  Google Scholar 

  20. Amaral-Zettler LA, McCliment EA, Ducklow HW, Huse SM (2009) A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. PLoS One 4:e6372

    Article  PubMed  PubMed Central  Google Scholar 

  21. Vancov T, Keen B (2009) Amplification of soil fungal community DNA using the ITS86F and ITS4 primers. FEMS Microbiol Lett 296:91–96

    Article  CAS  PubMed  Google Scholar 

  22. Kerckhof F-M, Courtens EN, Geirnaert A, Hoefman S, Ho A et al (2014) Optimized cryopreservation of mixed microbial communities for conserved functionality and diversity. PLoS One 9:e99517

    Article  PubMed  PubMed Central  Google Scholar 

  23. Prakash O, Jangid K (2015) Preservation of uncultivated microbial cells for single cell genomics and cultivation in future. Single Cell Biol. doi:10.4172/2168-9431.S1-003 2015

    Google Scholar 

  24. Lauber CL, Zhou N, Gordon JI, Knight R, Fierer N (2010) Effect of storage conditions on the assessment of bacterial community structure in soil and human-associated samples. FEMS Microbiol Lett 307:80–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39

    Article  CAS  PubMed  Google Scholar 

  26. Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119:329–339

    Article  CAS  Google Scholar 

  27. Ali SZ, Sandhya V, Rao LV (2014) Isolation and characterization of drought-tolerant ACC deaminase and exopolysaccharide-producing fluorescent Pseudomonas sp. Ann Microbiol 64:493–502

    Article  CAS  Google Scholar 

  28. Li Z, Chang S, Lin L, Li Y, An Q (2011) A colorimetric assay of 1-aminocyclopropane-1-carboxylate (ACC) based on ninhydrin reaction for rapid screening of bacteria containing ACC deaminase. Lett Appl Microbiol 53:178–185

    Article  CAS  PubMed  Google Scholar 

  29. Michel BE, Kaufmann MR (1973) The osmotic potential of polyethylene glycol 6000. Plant Physiol 51:914–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the US Department of Energy, the BioEnergy Science Center (BESC), through the Office of Biological and Environmental Research in the DOE Office of Science and The Samuel Roberts Noble Foundation. We declare no conflict of interests inherent to this submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly D. Craven .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Lakshmanan, V., Ray, P., Craven, K.D. (2017). Rhizosphere Sampling Protocols for Microbiome (16S/18S/ITS rRNA) Library Preparation and Enrichment for the Isolation of Drought Tolerance-Promoting Microbes. In: Sunkar, R. (eds) Plant Stress Tolerance. Methods in Molecular Biology, vol 1631. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7136-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7136-7_23

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7134-3

  • Online ISBN: 978-1-4939-7136-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics