Skip to main content

Current Overview of TALEN Construction Systems

  • Protocol
  • First Online:
Genome Editing in Animals

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1630))

Abstract

Transcription activator-like effector (TALE) nuclease (TALEN) is the second-generation genome editing tool consisting of TALE protein containing customizable DNA-binding repeats and nuclease domain of FokI enzyme. Each DNA-binding repeat recognizes one base of double-strand DNA, and functional TALEN can be created by a simple modular assembly of these repeats. To easily and efficiently assemble the highly repetitive DNA-binding repeat arrays, various construction systems such as Golden Gate assembly, serial ligation, and ligation-independent cloning have been reported. In this chapter, we summarize the current situation of these systems and publically available reagents and protocols, enabling optimal selection of best suited systems for every researcher who wants to utilize TALENs in various research fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sakuma T, Yamamoto T (2015) CRISPR/Cas9: the leading edge of genome editing technology. In: Yamamoto T (ed) Targeted genome editing using site-specific nucleases: ZFNs, TALENs, and the CRISPR/Cas9 system. Springer, Japan, Tokyo pp 25–41

    Google Scholar 

  2. Sakuma T, Woltjen K (2014) Nuclease-mediated genome editing: at the front-line of functional genomics technology. Develop Growth Differ 56:2–13

    Article  CAS  Google Scholar 

  3. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512

    Article  CAS  PubMed  Google Scholar 

  4. Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326:1501

    Article  CAS  PubMed  Google Scholar 

  5. Sakuma T, Ochiai H, Kaneko T, Mashimo T, Tokumasu D, Sakane Y, Suzuki K, Miyamoto T, Sakamoto N, Matsuura S, Yamamoto T (2013) Repeating pattern of non-RVD variations in DNA-binding modules enhances TALEN activity. Sci Rep 3:3379

    Article  PubMed  PubMed Central  Google Scholar 

  6. Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, Meng X, Paschon DE, Leung E, Hinkley SJ, Dulay GP, Hua KL, Ankoudinova I, Cost GJ, Urnov FD, Zhang HS, Holmes MC, Zhang L, Gregory PD, Rebar EJ (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29:143–148

    Article  CAS  PubMed  Google Scholar 

  7. Mussolino C, Morbitzer R, Lütge F, Dannemann N, Lahaye T, Cathomen T (2011) A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res 39:9283–9293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Guilinger JP, Pattanayak V, Reyon D, Tsai SQ, Sander JD, Joung JK, Liu DR (2014) Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity. Nat Methods 11:429–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kamens J (2015) The Addgene repository: an international nonprofit plasmid and data resource. Nucleic Acids Res 43(Database issue):D1152–D1157

    Article  PubMed  Google Scholar 

  10. Engler C, Kandzia R, Marillonnet S (2008) A one pot, one step, precision cloning method with high throughput capability. PLoS One 3:e3647

    Article  PubMed  PubMed Central  Google Scholar 

  11. Engler C, Gruetzner R, Kandzia R, Marillonnet S (2009) Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS One 4:e5553

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39:e82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sakuma T, Hosoi S, Woltjen K, Suzuki K, Kashiwagi K, Wada H, Ochiai H, Miyamoto T, Kawai N, Sasakura Y, Matsuura S, Okada Y, Kawahara A, Hayashi S, Yamamoto T (2013) Efficient TALEN construction and evaluation methods for human cell and animal applications. Genes Cells 18:315–326

    Article  CAS  PubMed  Google Scholar 

  14. Li HL, Fujimoto N, Sasakawa N, Shirai S, Ohkame T, Sakuma T, Tanaka M, Amano N, Watanabe A, Sakurai H, Yamamoto T, Yamanaka S, Hotta A (2015) Precise correction of the dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem Cell Rep 4:143–154

    Article  CAS  Google Scholar 

  15. Ichiyanagi N, Fujimori K, Yano M, Ishihara-Fujisaki C, Sone T, Akiyama T, Okada Y, Akamatsu W, Matsumoto T, Ishikawa M, Nishimoto Y, Ishihara Y, Sakuma T, Yamamoto T, Tsuiji H, Suzuki N, Warita H, Aoki M, Okano H (2016) Establishment of in vitro FUS-associated familial amyotrophic lateral sclerosis model using human induced pluripotent stem cells. Stem Cell Rep 6:496–510

    Article  CAS  Google Scholar 

  16. Sugi T, Sakuma T, Ohtani T, Yamamoto T (2014) Versatile strategy for isolating TALEN-mediated knockout mutants in Caenorhabditis elegans. Develop Growth Differ 56:78–85

    Article  CAS  Google Scholar 

  17. Hosoi S, Sakuma T, Sakamoto N, Yamamoto T (2014) Targeted mutagenesis in sea urchin embryos using TALENs. Develop Growth Differ 56:92–97

    Article  CAS  Google Scholar 

  18. Treen N, Yoshida K, Sakuma T, Sasaki H, Kawai N, Yamamoto T, Sasakura Y (2014) Tissue-specific and ubiquitous gene knockouts by TALEN electroporation provide new approaches to investigating gene function in Ciona. Development 141:481–487

    Article  CAS  PubMed  Google Scholar 

  19. Hiruta C, Ogino Y, Sakuma T, Toyota K, Miyagawa S, Yamamoto T, Iguchi T (2014) Targeted gene disruption by use of transcription activator-like effector nuclease (TALEN) in the water flea Daphnia pulex. BMC Biotechnol 14:95

    Article  PubMed  PubMed Central  Google Scholar 

  20. Guo L, Yamashita H, Kou I, Takimoto A, Meguro-Horike M, Horike S, Sakuma T, Miura S, Adachi T, Yamamoto T, Ikegawa S, Hiraki Y, Shukunami C (2016) Functional investigation of a non-coding variant associated with adolescent idiopathic scoliosis in Zebrafish: elevated expression of the ladybird Homeobox gene causes body Axis deformation. PLoS Genet 12:e1005802

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hayashi T, Sakamoto K, Sakuma T, Yokotani N, Inoue T, Kawaguchi E, Agata K, Yamamoto T, Takeuchi T (2014) TALENs efficiently disrupt the target gene in Iberian ribbed newts (Pleurodeles waltl), an experimental model animal for regeneration. Develop Growth Differ 56:115–121

    Article  CAS  Google Scholar 

  22. Nakagawa Y, Yamamoto T, Suzuki K, Araki K, Takeda N, Ohmuraya M, Sakuma T (2014) Screening methods to identify TALEN-mediated knockout mice. Exp Anim 63:79–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sato K, Oiwa R, Kumita W, Henry R, Sakuma T, Ito R, Nozu R, Inoue T, Katano I, Sato K, Okahara N, Okahara J, Shimizu Y, Yamamoto M, Hanazawa K, Kawakami T, Kametani Y, Suzuki R, Takahashi T, Weinstein EJ, Yamamoto T, Sakakibara Y, Habu S, Hata J, Okano H, Sasaki E (2016) Generation of a nonhuman primate model of severe combined immunodeficiency using highly efficient genome editing. Cell Stem Cell 19:127–138

    Article  CAS  PubMed  Google Scholar 

  24. Sakuma T, Yamamoto T (2016) Engineering customized TALENs using the Platinum gate TALEN kit. Methods Mol Biol 1338:61–70

    Article  CAS  PubMed  Google Scholar 

  25. Sanjana NE, Cong L, Zhou Y, Cunniff MM, Feng G, Zhang F (2012) A transcription activator-like effector toolbox for genome engineering. Nat Protoc 7:171–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ding Q, Lee YK, Schaefer EA, Peters DT, Veres A, Kim K, Kuperwasser N, Motola DL, Meissner TB, Hendriks WT, Trevisan M, Gupta RM, Moisan A, Banks E, Friesen M, Schinzel RT, Xia F, Tang A, Xia Y, Figueroa E, Wann A, Ahfeldt T, Daheron L, Zhang F, Rubin LL, Peng LF, Chung RT, Musunuru K, Cowan CA (2013) A TALEN genome-editing system for generating human stem cell-based disease models. Cell Stem Cell 12:238–251

    Article  CAS  PubMed  Google Scholar 

  27. Ma AC, Lee HB, Clark KJ, Ekker SC (2013) High efficiency in vivo genome engineering with a simplified 15-RVD GoldyTALEN design. PLoS One 8:e65259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ma AC, McNulty MS, Poshusta TL, Campbell JM, Martínez-Gálvez G, Argue DP, Lee HB, Urban MD, Bullard CE, Blackburn PR, Man TK, Clark KJ, Ekker SC (2016) FusX: a rapid one-step transcription activator-like effector assembly system for genome Science. Hum Gene Ther 27:451–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Valton J, Dupuy A, Daboussi F, Thomas S, Maréchal A, Macmaster R, Melliand K, Juillerat A, Duchateau P (2012) Overcoming transcription activator-like effector (TALE) DNA binding domain sensitivity to cytosine methylation. J Biol Chem 287:38427–38432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sander JD, Cade L, Khayter C, Reyon D, Peterson RT, Joung JK, Yeh JR (2011) Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nat Biotechnol 29:697–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Reyon, D., Khayter, C., Regan, M.R., Joung, J.K., and Sander, J.D. (2012) Engineering designer transcription activator-like effector nucleases (TALENs) by REAL or REAL-fast assembly. Curr Protoc Mol Biol chapter 12, Unitas 12.15

    Google Scholar 

  32. Reyon D, Tsai SQ, Khayter C, Foden JA, Sander JD, Joung JK (2012) FLASH assembly of TALENs for high-throughput genome editing. Nat Biotechnol 30:460–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Reyon, D., Maeder, M.L., Khayter, C., Tsai, S.Q., Foley, J.E., Sander, J.D., and Joung, J.K. (2013) Engineering customized TALE nucleases (TALENs) and TALE transcription factors by fast ligation-based automatable solid-phase high-throughput (FLASH) assembly. Curr Protoc Mol Biol chapter 12, Unitas 12.16

    Google Scholar 

  34. Schmid-Burgk JL, Schmidt T, Kaiser V, Höning K, Hornung V (2013) A ligation-independent cloning technique for high-throughput assembly of transcription activator–like effector genes. Nat Biotechnol 31:76–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schmid-Burgk JL, Schmidt T, Hornung V (2015) Ligation-independent cloning (LIC) assembly of TALEN genes. Methods Mol Biol 1239:161–169

    Article  CAS  PubMed  Google Scholar 

  36. Briggs AW, Rios X, Chari R, Yang L, Zhang F, Mali P, Church GM (2012) Iterative capped assembly: rapid and scalable synthesis of repeat-module DNA such as TAL effectors from individual monomers. Nucleic Acids Res 40:e117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang S, Li W, Wang S, Hu B (2014) Rapid and efficient assembly of transcription activator-like effector genes by USER cloning. J Genet Genomics 41:339–347

    Article  PubMed  Google Scholar 

  38. Yang J, Yuan P, Wen D, Sheng Y, Zhu S, Yu Y, Gao X, Wei W (2013) ULtiMATE system for rapid assembly of customized TAL effectors. PLoS One 8:e75649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gogolok S, Garcia-Diaz C, Pollard SM (2016) STAR: a simple TAL effector assembly reaction using isothermal assembly. Sci Rep 6:33209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang F, Zhang H, Gao J, Chen F, Chen S, Zhang C, Peng G (2016) Rapid and accurate synthesis of TALE genes from synthetic oligonucleotides. BioTechniques 60:299–305

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the Japan Society for the Promotion of Science (16 K18478 to T.S.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tetsushi Sakuma or Takashi Yamamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Sakuma, T., Yamamoto, T. (2017). Current Overview of TALEN Construction Systems. In: Hatada, I. (eds) Genome Editing in Animals. Methods in Molecular Biology, vol 1630. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7128-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7128-2_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7127-5

  • Online ISBN: 978-1-4939-7128-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics