Skip to main content

Genome Editing of the Ascidian Ciona intestinalis with TALE Nuclease

  • Protocol
  • First Online:
Genome Editing in Animals

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1630))

Abstract

The ascidian Ciona intestinalis is an important model animal for studying developmental mechanisms for constructing the chordate body. Although molecular and embryological techniques for manipulating Ciona genes were developed a long time ago, recent achievements of genome editing in this animal have innovated functional analyses of genes in Ciona. Particularly, knockout of genes in the G0 generation coupled with tissue-specific expression of TALENs enables us to rapidly address gene functions that were difficult using previous methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lemaire P (2011) Evolutionary crossroads in developmental biology: the tunicates. Development 138:2143–2152

    Article  CAS  PubMed  Google Scholar 

  2. Nishida H (2002) Patterning the marginal zone of early ascidian embryos: localized maternal mRNA and inductive interactions. BioEssays 24:613–624

    Article  CAS  Google Scholar 

  3. Ogura Y, Sasakura Y (2016) Developmental control of cell-cycle compensation provides a switch for patterned mitosis at the onset of chordate neurulation. Dev Cell 37:148–161

    Article  CAS  PubMed  Google Scholar 

  4. Dehal P, Satou Y, Campbell RK et al (2002) The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298:2157–2167

    Article  CAS  PubMed  Google Scholar 

  5. Satou Y, Yamada L, Mochizuki Y et al (2002) A cDNA resource from the basal chordate Ciona intestinalis. Genesis 33:153–154

    Article  CAS  PubMed  Google Scholar 

  6. Satou Y, Mineta K, Ogasawara M et al (2008) Improved genome assembly and evidence-based global gene model set for the chordate Ciona intestinalis: new insight into intron and populations. Genome Res 9:R152

    Google Scholar 

  7. Satou Y, Imai KS, Satoh N (2001) Action of morpholinos in Ciona embryos. Genesis 30:103–106

    Article  CAS  PubMed  Google Scholar 

  8. Sasakura Y, Kanda M, Ikeda T et al (2012) Retinoic acid-driven Hox1 is required in the epidermis for forming the otic/atrial placodes during ascidian metamorphosis. Development 139:2156–2160

    Article  CAS  PubMed  Google Scholar 

  9. Corbo JC, Levine M, Zeller RW (1997) Characterization of a notochord-specific enhancer from the Brachyury promoter region of the ascidian, Ciona intestinalis. Development 124:589–602

    CAS  PubMed  Google Scholar 

  10. Zeller RW, Weldon DS, Pellatiro MA, Cone AC (2006) Optimized green fluorescent protein variants provide improved single cell resolution of transgene expression in ascidian embryos. Dev Dyn 235:456–467

    Article  CAS  PubMed  Google Scholar 

  11. Bentrand V, Hudson C, Caillol D et al (2003) Neural tissue in ascidian embryos is induced by FGF9/16/20, acting via a combination of maternal GATA and Ets transcription factors. Cell 115:615–627

    Article  Google Scholar 

  12. Joly JS, Kano S, Matsuoka T et al (2007) Culture of Ciona intestinalis in closed systems. Dev Dyn 236:1832–1840

    Article  PubMed  Google Scholar 

  13. Sasakura Y, Awazu S, Chiba S, Satoh N (2003) Germ-line transgenesis of the Tc1/mariner superfamily transposon Minos in Ciona intestinalis. Proc Natl Acad Sci U S A 100:7726–7730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sasakura Y, Awazu S, Chiba S et al (2003) Application of Minos, one of the Tc1/mariner superfamily transposable elements, to ascidian embryos as a tool for insertional mutagenesis. Gene 308:11–20

    Article  CAS  PubMed  Google Scholar 

  15. Sasakura Y, Nakashima K, Awazu S et al (2005) Transposon-mediated insertional mutagenesis revealed the functions of animal cellulose synthase in the ascidian Ciona intestinalis. Proc Natl Acad Sci U S A 102:15134–15139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Meng X, Noyes MB, Zhu LJ et al (2008) Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol 26:695–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ochiai H, Fujita K, Suzuki KI et al (2010) Targeted mutagenesis in the sea urchin embryo using zinc-finger nucleases. Genes Cells 15:875–885

    CAS  PubMed  Google Scholar 

  18. Watanabe T, Ochiai H, Sakuma T et al (2012) Non-transgenic genome modifications in a hemimetabolous insect using zinc-finger and TAL effector nucleases. Nat Commun 3:1017

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kawai N, Ochiai H, Sakuma T et al (2012) Efficient targeted mutagenesis of the chordate Ciona intestinalis genome with zinc finger nucleases. Develop Growth Differ 54:535–545

    Article  CAS  Google Scholar 

  20. Treen N, Yoshida K, Sakuma T et al (2014) Tissue-specific and ubiquitous gene knockouts by TALEN electroporation provide new approaches to investigate gene function in Ciona. Development 141:481–487

    Article  CAS  PubMed  Google Scholar 

  21. Sasaki H, Yoshida K, Hozumi A, Sasakura Y (2014) CRISPR/Cas9-mediated gene knockout in the ascidian Ciona intestinalis. Develop Growth Differ 56:499–510

    Article  CAS  Google Scholar 

  22. Stolfi A, Gandhi S, Salek F, Christiaen L (2014) Tissue-specific genome editing in Ciona embryos by CRISPR/Cas9. Development 141:4115–4120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sakuma T, Ochiai H, Kaneko T et al (2013) Repeated pattern of non-RVD variations in DNA-binding modules enhances TALEN activity. Sci Rep 3:3379

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sasakura Y, Suzuki MM, Hozumi A et al (2010) Maternal factor-mediated epigenetic gene silencing in the ascidian Ciona intestinalis. Mol Gen Genomics 283:99–110

    Article  CAS  Google Scholar 

  25. Sakuma T, Hosoi S, Woltjen K et al (2013) Efficient TALEN construction and evaluation methods for human cell and animal applications. Genes Cells 18:315–326

    Article  CAS  PubMed  Google Scholar 

  26. Ota S, Hisano Y, Muraki M et al (2013) Efficient identification of TALEN-mediated genome modifications using heteroduplex mobility assays. Genes Cells 18:450–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kawai N, Ogura Y, Ikuta T et al (2015) Hox10-regulated endodermal cell migration is essential for development of the ascidian intestine. Dev Biol 403:43–56

    Article  CAS  PubMed  Google Scholar 

  28. Yoshida K, Treen N, Hozumi A et al (2014) Germ cell mutations of the ascidian Ciona intestinalis with TALE nucleases. Genesis 52:431–439

    Article  CAS  PubMed  Google Scholar 

  29. Akanuma T, Hori S, Darras S, Nishida H (2002) Notch signaling is involved in neurogenesis in the ascidian embryos. Dev Genes Evol 212:459–472

    Article  CAS  PubMed  Google Scholar 

  30. Satoh N, Rokhsar D, Nishikawa T (2014) Chordate evolution and the three-phylum system. Proc Biol Sci 281:20141729

    Article  PubMed  PubMed Central  Google Scholar 

  31. Fujimura M, Takamura K (2000) Characterization of an ascidian DEAD-box gene, Ci-DEAD1: specific expression in the germ cells and its mRNA localization in the posterior-most blastomeres in early embryos. Dev Genes Evol 210:64–72

    Article  CAS  PubMed  Google Scholar 

  32. Nishikata T, Yamada L, Mochizuki Y et al (2001) Profiles of maternally expressed genes in fertilized eggs of Ciona intestinalis. Dev Biol 238:315–331

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Drs. Hiroshi Ochiai, Tetsushi Sakuma, and Takashi Yamamoto for their help to support our researches. This study was supported by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS) and Ministry of Education, Culture, Sports, Science and Technology (MEXT) to Y.S. Y.S. was supported by the Toray Science and Technology Grant. Further support was provided by grants from the National Bioresource Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasunori Sasakura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Sasakura, Y., Yoshida, K., Treen, N. (2017). Genome Editing of the Ascidian Ciona intestinalis with TALE Nuclease. In: Hatada, I. (eds) Genome Editing in Animals. Methods in Molecular Biology, vol 1630. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7128-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7128-2_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7127-5

  • Online ISBN: 978-1-4939-7128-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics