Skip to main content

CRISPR/Cas9-Mediated Targeted Knockin of Exogenous Reporter Genes in Zebrafish

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1630))

Abstract

Genome editing technologies such as ZFN, TALEN, and CRISPR/Cas9 efficiently induce DNA double-stranded breaks (DSBs) at a targeted genomic locus, often resulting in a frameshift-mediated target gene disruption. It remains difficult to perform targeted integration of exogenous genes by genome editing technologies. DSBs can be restored through DNA repair mechanisms, such as non-homologous end joining (NHEJ), microhomology-mediated end joining (MMEJ), and homologous recombination (HR). It is well known that HR facilitates homology-dependent integration of donor DNA template into a targeted locus. Recently, both NHEJ-mediated and MMEJ-mediated targeted integrations of exogenous genes have been developed in zebrafish. This chapter summarizes the application of CRISPR/Cas9-mediated knock-in technology in zebrafish.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Hisano Y, Ota S, Kawahara A (2014) Genome editing using artificial site-specific nucleases in zebrafish. Dev Growth Differ 56:26–33

    Article  CAS  PubMed  Google Scholar 

  2. Haffter P, Granato M, Brand M, Mullins MC, Hammerschmidt M, Kane DA et al (1996) The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123:1–36

    CAS  PubMed  Google Scholar 

  3. Driever W, Solnica-Krezel L, Schier AF, Neuhauss SC, Malicki J, Stemple DL et al (1996) A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123:37–46

    CAS  PubMed  Google Scholar 

  4. Thisse C, Zon LI (2002) Organogenesis-heart and blood formation from the zebrafish point of view. Science 295:457–462

    Article  CAS  PubMed  Google Scholar 

  5. Kawahara A, Nishi T, Hisano Y, Fukui H, Yamaguchi A, Mochizuki N (2009) The sphingolipid transporter spns2 functions in migration of zebrafish myocardial precursors. Science 323:524–527

    Article  CAS  PubMed  Google Scholar 

  6. McVey M, Lee SE (2008) MMEJ repair of double-strand breaks (director's cut): deleted sequences and alternative endings. Trends Genet 24:529–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zu Y, Tong X, Wang Z, Liu D, Pan R, Li Z et al (2013) TALEN-mediated precise genome modification by homologous recombination in zebrafish. Nat Methods 10:329–331

    Article  CAS  PubMed  Google Scholar 

  8. Shin J, Chen J, Solnica-Krezel L (2014) Efficient homologous recombination-mediated genome engineering in zebrafish using TALEN nucleases. Development 141:3807–3818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Irion U, Krauss J, Nusslein-Volhard C (2014) Precise and efficient genome editing in zebrafish using the CRISPR/Cas9 system. Development 141:4827–4830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Auer TO, Duroure K, De Cian A, Concordet JP, Del Bene F (2014) Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res 24:142–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kimura Y, Hisano Y, Kawahara A, Higashijima S (2014) Efficient generation of knock-in transgenic zebrafish carrying reporter/driver genes by CRISPR/Cas9-mediated genome engineering. Sci Rep 4:6545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ota S, Taimatsu K, Yanagi K, Namiki T, Higashijima S, Kawahara A (2016) Functional visualization and disruption of targeted genes using CRISPR/Cas9-mediated eGFP reporter integration in zebrafish. Sci Rep 6:34991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hisano Y, Sakuma T, Nakade S, Ohga R, Ota S, Okamoto H et al (2015) Precise in-frame integration of exogenous DNA mediated by CRISPR/Cas9 system in zebrafish. Sci Rep 5:8841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nakade S, Tsubota T, Sakane Y, Kume S, Sakamoto N, Obara M et al (2014) Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nat Commun 5:5560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD et al (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31:227–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ansai S, Kinoshita M (2014) Targeted mutagenesis using CRISPR/Cas system in medaka. Biol Open 3:362–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was supported by the Japan Society for the Promotion of Science (JSPS, 26640064), Japan Agency for Medical Research and Development (AMED, 16km0210077j0001), the Takeda Science Foundation, and the SENSHIN Medical Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsuo Kawahara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Kawahara, A. (2017). CRISPR/Cas9-Mediated Targeted Knockin of Exogenous Reporter Genes in Zebrafish. In: Hatada, I. (eds) Genome Editing in Animals. Methods in Molecular Biology, vol 1630. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7128-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7128-2_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7127-5

  • Online ISBN: 978-1-4939-7128-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics