Skip to main content

Multiplexed Transcriptional Activation or Repression in Plants Using CRISPR-dCas9-Based Systems

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1629))

Abstract

Novel tools and methods for regulating in vivo plant gene expression are quickly gaining popularity and utility due to recent advances in CRISPR-dCas9 chimeric effector regulators, otherwise known as CRISPR artificial transcription factors (CRISPR-ATFs). These tools are especially useful for studying gene function and interaction within various regulatory networks. First generation CRISPR-ATFs are nuclease-deactivated (dCas9) CRISPR systems where dCas9 proteins are fused to known transcriptional activator domains (VP64) or repressor domains (SRDX). When multiple chimeric dCas9-effector fusions are guided to gene regulatory regions via CRISPR gRNAs, they can modulate expression of transcript levels in planta. The protocol presented here provides a detailed procedure for activating AtPAP1 and repressing AtCSTF64 in Arabidopsis thaliana. This protocol makes use of our plant CRISPR toolbox to streamline the assembly and cloning of multiplex CRISPR-Cas9 transcriptional regulatory constructs.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Choo Y, Isalan M (2000) Advances in zinc finger engineering. Curr Opin Struct Biol 10:411–416

    Article  CAS  PubMed  Google Scholar 

  2. Sanchez J-P, Ullman C, Moore M, Choo Y, Chua N-H (2002) Regulation of gene expression in Arabidopsis thaliana by artificial zinc finger chimeras. Plant Cell Physiol 43(12):1465–1472

    Article  CAS  PubMed  Google Scholar 

  3. Sera T (2009) Zinc-finger-based artificial transcription factors and their applications. Adv Drug Deliv Rev 61:513–526

    Article  CAS  PubMed  Google Scholar 

  4. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326(5959):1509–1512. doi:10.1126/science.1178811

    Article  CAS  PubMed  Google Scholar 

  5. Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326(5959):1501. doi:10.1126/science.1178817

    Article  CAS  PubMed  Google Scholar 

  6. Mahfouz MM, Li L, Piatek M, Fang X, Mansour H, Bangarusamy DK, Zhu JK (2012) Targeted transcriptional repression using a chimeric TALE-SRDX repressor protein. Plant Mol Biol 78(3):311–321. doi:10.1007/s11103-011-9866-x

    Article  CAS  PubMed  Google Scholar 

  7. Perez-Pinera P, Ousterout D, Brunger J, Farin A, Glass K, Guilak F, Crawford G, Hartemink A, Gersback C (2013) Synergistic and tunable human gene activation by combinations of synthetic transcription factors. Nat Methods 10(3):239–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, Stern-Ginossar N, Brandman O, Whitehead EH, Doudna JA, Lim WA, Weissman JS, Qi LS (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154(2):442–451. doi:10.1016/j.cell.2013.06.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Maeder M, Linder S, Cascio V, Fu Y, Ho Q, Joung K (2013) CRISPR RNA-guided activation of endogenous human genes. Nat Methods. doi:10.1038/NMETH.2598

    Google Scholar 

  10. Chavez A, Tuttle M, Pruitt B, Ewen-Campen B, Chari R, Ter-Ovanesyan D, Haque S, Cecchi R, Kowal E, Buchthal J, Housden B, Perrimon N, Collins J, Church G (2016) Comparison of Cas9 activators in multiple species. Nat Methods. doi:10.1038/NMETH.3871

    PubMed  PubMed Central  Google Scholar 

  11. Aoyama T, Chua N-H (1997) A glucocorticoid-mediated transcriptional induction system in transgenic plants. Plant J 11(3):605–612

    Article  CAS  PubMed  Google Scholar 

  12. Uesugi M, Nyanguile O, Lu H, Levine A, Verdine G (1997) Induced α helix in the VP16 activation domain upon binding to a human TAF. Science 277:1310–1313

    Article  CAS  PubMed  Google Scholar 

  13. Carey M, Lin Y-S, Green M, Ptashne M (1990) A mechanism for synergistic activation of a mammalian gene by GAL4 derivatives. Nature 345:361–364

    Article  CAS  PubMed  Google Scholar 

  14. Perez-Pinera P, Kocak D, Vockley C, Adler A, Kabadi A, Polstein L, Thakore P, Glass K, Ousterout D, Leong K, Guilak F, Crawford G, Reddy T, Gersback C (2013) RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods. doi:10.1038/NMETH.2600

    Google Scholar 

  15. Hiratsu K, Matsui K, Koyama T, Ohme-Takagi M (2003) Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis. Plant J 34:733–739

    Article  CAS  PubMed  Google Scholar 

  16. Piatek A, Ali Z, Baazim H, Li L, Abulfaraj A, Al-Shareef S, Aouida M, Mahfouz M (2015) RNA-guided transcriptional regulation in Planta via synthetic dCas9-based transcription factors. Plant Biotechnol J 13:578–589

    Article  CAS  PubMed  Google Scholar 

  17. Szemenyei H, Hannon M, Long J (2008) TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis. Science 319:1384–1386

    Article  CAS  PubMed  Google Scholar 

  18. Lowder L, Zhang D, Baltes N, Paul J III, Tang X, Zheng X, Voytas D, Hsieh T-F, Zhang Y, Qi Y (2015) A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol 169:971–985

    Article  PubMed  PubMed Central  Google Scholar 

  19. Curtis MD, Grossniklaus U (2003) A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol 133:462–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743

    Article  CAS  PubMed  Google Scholar 

  21. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3(6):1101–1108

    Article  CAS  PubMed  Google Scholar 

  22. Isaac S, Jiang F, Doudna J, Lim W, Narlikar G, Almeida R (2016) Nucleosome breathing and remodeling constrain CRISPR-Cas9 function. elife 6(5). doi:10.7554/eLife.13450

  23. Horlbeck MA, Witkowsky LB, Guglielmi B, Replogle JM, Gilbert LA, Villalta JE, Torigoe SE, Tjian R, Weissman JS (2016) Nucleosomes impede Cas9 access to DNA in vivo and in vitro. elife 5. doi:10.7554/eLife.12677

  24. Borevitz JO, Xia Y, Blount J, Dixon RA, Lamb C (2000) Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12(12):2383–2394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu F, Marquardt S, Lister C, Swiezewski S, Dean C (2010) Targeted 3′ processing of antisense transcripts triggers Arabidopsis FLC chromatin silencing. Science 327(5961):94–97. doi:10.1126/science.1180278

    Article  CAS  PubMed  Google Scholar 

  26. Graham D, Root D (2015) Resources for the design of CRISPR gene editing experiments. Genome Biol 16:260

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work is supported by a Collaborative Funding Grant (2016-CFG-8003) from North Carolina Biotechnology Center and Syngenta Biotechnology to Y.Q.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiping Qi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Lowder, L.G., Paul, J.W., Qi, Y. (2017). Multiplexed Transcriptional Activation or Repression in Plants Using CRISPR-dCas9-Based Systems. In: Kaufmann, K., Mueller-Roeber, B. (eds) Plant Gene Regulatory Networks. Methods in Molecular Biology, vol 1629. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7125-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7125-1_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7124-4

  • Online ISBN: 978-1-4939-7125-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics