Skip to main content

From Genes to Networks: Characterizing Gene-Regulatory Interactions in Plants

  • Protocol
  • First Online:
Book cover Plant Gene Regulatory Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1629))

Abstract

Plants, like other eukaryotes, have evolved complex mechanisms to coordinate gene expression during development, environmental response, and cellular homeostasis. Transcription factors (TFs), accompanied by basic cofactors and posttranscriptional regulators, are key players in gene-regulatory networks (GRNs). The coordinated control of gene activity is achieved by the interplay of these factors and by physical interactions between TFs and DNA. Here, we will briefly outline recent technological progress made to elucidate GRNs in plants. We will focus on techniques that allow us to characterize physical interactions in GRNs in plants and to analyze their regulatory consequences. Targeted manipulation allows us to test the relevance of specific gene-regulatory interactions. The combination of genome-wide experimental approaches with mathematical modeling allows us to get deeper insights into key-regulatory interactions and combinatorial control of important processes in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Waddington CH (1957) The strategy of the genes. Allen and Unwin, London

    Google Scholar 

  2. Moris N, Pina C, Arias AM (2016) Transition states and cell fate decisions in epigenetic landscapes. Nat Rev Genet 17(11):693–703

    Article  CAS  PubMed  Google Scholar 

  3. Gottesman S (1984) Bacterial regulation: global regulatory networks. Annu Rev Genet 18:415–441

    Article  CAS  PubMed  Google Scholar 

  4. Kauffman S (1969) Homeostasis and differentiation in random genetic control networks. Nature 224(5215):177–178

    Article  CAS  PubMed  Google Scholar 

  5. Kauffman SA (1969) Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol 22(3):437–467

    Article  CAS  PubMed  Google Scholar 

  6. Nusslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287(5785):795–801

    Article  CAS  PubMed  Google Scholar 

  7. Anderson KV, Jurgens G, Nusslein-Volhard C (1985) Establishment of dorsal-ventral polarity in the Drosophila embryo: genetic studies on the role of the Toll gene product. Cell 42(3):779–789

    Article  CAS  PubMed  Google Scholar 

  8. Gehring WJ, Hiromi Y (1986) Homeotic genes and the homeobox. Annu Rev Genet 20:147–173

    Article  CAS  PubMed  Google Scholar 

  9. Yanofsky MF et al (1990) The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346(6279):35–39

    Article  CAS  PubMed  Google Scholar 

  10. Sommer H et al (1990) Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO J 9(3):605–613

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Panchy N, Lehti-Shiu M, Shiu SH (2016) Evolution of Gene duplication in plants. Plant Physiol 171(4):2294–2316

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Jin J et al (2014) PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors. Nucleic Acids Res 42(Database issue):D1182–D1187

    Article  CAS  PubMed  Google Scholar 

  13. Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39(Database issue):D152–D157

    Article  CAS  PubMed  Google Scholar 

  14. Ostergaard L, Yanofsky MF (2004) Establishing gene function by mutagenesis in Arabidopsis thaliana. Plant J 39(5):682–696

    Article  CAS  PubMed  Google Scholar 

  15. Lo SF et al (2016) Genetic resources offer efficient tools for rice functional genomics research. Plant Cell Environ 39(5):998–1013

    Article  CAS  PubMed  Google Scholar 

  16. Liu D et al (2016) Advances and perspectives on the use of CRISPR/Cas9 systems in plant genomics research. Curr Opin Plant Biol 30:70–77

    Article  CAS  PubMed  Google Scholar 

  17. Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346(6213):1258096

    Article  PubMed  Google Scholar 

  18. Yan W, Chen D, Kaufmann K (2016) Efficient multiplex mutagenesis by RNA-guided Cas9 and its use in the characterization of regulatory elements in the AGAMOUS gene. Plant Methods 12:23

    Article  PubMed  PubMed Central  Google Scholar 

  19. O’Malley RC, Ecker JR (2010) Linking genotype to phenotype using the Arabidopsis unimutant collection. Plant J 61(6):928–940

    Article  PubMed  Google Scholar 

  20. Krouk G et al (2013) Gene regulatory networks in plants: learning causality from time and perturbation. Genome Biol 14(6):123

    Article  PubMed  PubMed Central  Google Scholar 

  21. O’Maoileidigh DS et al (2015) Gene network analysis of Arabidopsis thaliana flower development through dynamic gene perturbations. Plant J 83(2):344–358

    Article  PubMed  Google Scholar 

  22. Iyer-Pascuzzi AS, Benfey PN (2010) Fluorescence-activated cell sorting in plant developmental biology. Methods Mol Biol 655:313–319

    Article  CAS  PubMed  Google Scholar 

  23. Bargmann BO, Birnbaum KD (2010) Fluorescence activated cell sorting of plant protoplasts. J Vis Exp (36)

    Google Scholar 

  24. Slane D et al (2015) Profiling of embryonic nuclear vs. cellular RNA in Arabidopsis thaliana. Genom Data 4:96–98

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhang C et al (2008) Global characterization of cell-specific gene expression through fluorescence-activated sorting of nuclei. Plant Physiol 147(1):30–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Deal RB, Henikoff S (2011) The INTACT method for cell type-specific gene expression and chromatin profiling in Arabidopsis thaliana. Nat Protoc 6(1):56–68

    Article  CAS  PubMed  Google Scholar 

  27. Kaufmann K et al (2010) Chromatin immunoprecipitation (ChIP) of plant transcription factors followed by sequencing (ChIP-SEQ) or hybridization to whole genome arrays (ChIP-CHIP). Nat Protoc 5(3):457–472

    Article  CAS  PubMed  Google Scholar 

  28. van Mourik H et al (2015) Characterization of in vivo DNA-binding events of plant transcription factors by ChIP-seq: experimental protocol and computational analysis. Methods Mol Biol 1284:93–121

    Article  PubMed  Google Scholar 

  29. Lau OS, Bergmann DC (2015) MOBE-ChIP: a large-scale chromatin immunoprecipitation assay for cell type-specific studies. Plant J 84(2):443–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Berger MF, Bulyk ML (2006) Protein binding microarrays (PBMs) for rapid, high-throughput characterization of the sequence specificities of DNA binding proteins. Methods Mol Biol 338:245–260

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Riley TR et al (2014) SELEX-seq: a method for characterizing the complete repertoire of binding site preferences for transcription factor complexes. Methods Mol Biol 1196:255–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Slattery M et al (2014) Absence of a simple code: how transcription factors read the genome. Trends Biochem Sci 39(9):381–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mathelier A et al (2016) DNA shape features improve transcription factor binding site predictions in vivo. Cell Syst 3(3):278–286. e4

    Article  CAS  PubMed  Google Scholar 

  34. Minguet EG et al (2015) MORPHEUS, a Webtool for transcription factor binding analysis using position weight matrices with dependency. PLoS One 10(8):e0135586

    Article  PubMed  PubMed Central  Google Scholar 

  35. Song L, Crawford GE (2010) DNase-seq: a high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells. Cold Spring Harb Protoc 2010(2):pdb prot5384

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bianco S et al (2015) Global mapping of open chromatin regulatory elements by formaldehyde-assisted isolation of regulatory elements followed by sequencing (FAIRE-seq). Methods Mol Biol 1334:261–272

    Article  CAS  PubMed  Google Scholar 

  37. Buenrostro JD et al (2015) ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr Protoc Mol Biol 109:21.29.1–21.29.9

    Article  Google Scholar 

  38. Weirauch MT et al (2014) Determination and inference of eukaryotic transcription factor sequence specificity. Cell 158(6):1431–1443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. O’Malley RC et al (2016) Cistrome and Epicistrome features shape the regulatory DNA landscape. Cell 165(5):1280–1292

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gaudinier A et al (2011) Enhanced Y1H assays for Arabidopsis. Nat Methods 8(12):1053–1055

    Article  CAS  PubMed  Google Scholar 

  41. Castrillo G et al (2011) Speeding cis-trans regulation discovery by phylogenomic analyses coupled with screenings of an arrayed library of Arabidopsis transcription factors. PLoS One 6(6):e21524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Brady SM et al (2011) A stele-enriched gene regulatory network in the Arabidopsis root. Mol Syst Biol 7:459

    Article  PubMed  PubMed Central  Google Scholar 

  43. Taylor-Teeples M et al (2015) An Arabidopsis gene regulatory network for secondary cell wall synthesis. Nature 517(7536):571–U307

    Article  CAS  PubMed  Google Scholar 

  44. Long Y et al (2015) Arabidopsis BIRD zinc finger proteins jointly stabilize tissue boundaries by confining the cell fate regulator SHORT-ROOT and contributing to fate specification. Plant Cell 27(4):1185–1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Honma T, Goto K (2001) Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409(6819):525–529

    Article  CAS  PubMed  Google Scholar 

  46. Smaczniak C et al (2012) Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development. Proc Natl Acad Sci U S A 109(5):1560–1565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Smaczniak C et al (2012) Proteomics-based identification of low-abundance signaling and regulatory protein complexes in native plant tissues. Nat Protoc 7(12):2144–2158

    Article  CAS  PubMed  Google Scholar 

  48. Van Leene J et al (2015) An improved toolbox to unravel the plant cellular machinery by tandem affinity purification of Arabidopsis protein complexes. Nat Protoc 10(1):169–187

    Article  PubMed  Google Scholar 

  49. Rajagopalan R et al (2006) A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 20(24):3407–3425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fahlgren N et al (2007) High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS One 2(2):e219

    Article  PubMed  PubMed Central  Google Scholar 

  51. German MA et al (2008) Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nat Biotechnol 26(8):941–946

    Article  CAS  PubMed  Google Scholar 

  52. Addo-Quaye C et al (2008) Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr Biol 18(10):758–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gutierrez RA et al (2007) Qualitative network models and genome-wide expression data define carbon/nitrogen-responsive molecular machines in Arabidopsis. Genome Biol 8(1):R7

    Article  PubMed  PubMed Central  Google Scholar 

  54. Lavedrine C, Farcot E, Vernoux T (2015) Modeling plant development: from signals to gene networks. Curr Opin Plant Biol 27:148–153

    Article  CAS  PubMed  Google Scholar 

  55. Wuest SE et al (2012) Molecular basis for the specification of floral organs by APETALA3 and PISTILLATA. Proc Natl Acad Sci U S A 109(33):13452–13457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Woo J et al (2012) The response and recovery of the Arabidopsis thaliana transcriptome to phosphate starvation. BMC Plant Biol 12:62

    Article  CAS  PubMed Central  Google Scholar 

  57. Goda H et al (2008) The AtGenExpress hormone and chemical treatment data set: experimental design, data evaluation, model data analysis and data access. Plant J 55(3):526–542

    Article  CAS  PubMed  Google Scholar 

  58. Moreno-Risueno MA et al (2015) Transcriptional control of tissue formation throughout root development. Science 350(6259):426–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Quackenbush J (2001) Computational analysis of microarray data. Nat Rev Genet 2(6):418–427

    Article  CAS  PubMed  Google Scholar 

  60. D'haeseleer P (2005) How does gene expression clustering work? Nat Biotechnol 23(12):1499–1501

    Article  PubMed  Google Scholar 

  61. Mathelier A et al (2016) JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles. Nucleic Acids Res 44(D1):D110–D115

    Article  PubMed  Google Scholar 

  62. Davuluri RV et al (2003) AGRIS: Arabidopsis Gene Regulatory Information Server, an information resource of Arabidopsis cis-regulatory elements and transcription factors. BMC Bioinformatics 4:25

    Article  PubMed  PubMed Central  Google Scholar 

  63. Higo K et al (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27(1):297–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bardet AF et al (2012) A computational pipeline for comparative ChIP-seq analyses. Nat Protoc 7(1):45–61

    Article  CAS  Google Scholar 

  65. Bailey T et al (2013) Practical guidelines for the comprehensive analysis of ChIP-seq data. PLoS Comput Biol 9(11):e1003326

    Article  PubMed  PubMed Central  Google Scholar 

  66. Koohy H et al (2014) A comparison of peak callers used for DNase-Seq data. PLoS One 9(5):e96303

    Article  PubMed  PubMed Central  Google Scholar 

  67. Gusmao EG et al (2016) Analysis of computational footprinting methods for DNase sequencing experiments. Nat Methods 13(4):303–309

    Article  PubMed  Google Scholar 

  68. Fahlgren N, Carrington JC (2010) miRNA target prediction in plants. Methods Mol Biol 592:51–57

    Article  CAS  PubMed  Google Scholar 

  69. Hecker M et al (2009) Gene regulatory network inference: data integration in dynamic models-a review. Biosystems 96(1):86–103

    Article  CAS  PubMed  Google Scholar 

  70. Le Novere N (2015) Quantitative and logic modelling of molecular and gene networks. Nat Rev Genet 16(3):146–158

    Article  PubMed  PubMed Central  Google Scholar 

  71. Lee WP, Tzou WS (2009) Computational methods for discovering gene networks from expression data. Brief Bioinform 10(4):408–423

    CAS  PubMed  Google Scholar 

  72. Bar-Joseph Z et al (2003) Computational discovery of gene modules and regulatory networks. Nat Biotechnol 21(11):1337–1342

    Article  CAS  PubMed  Google Scholar 

  73. Stuart JM et al (2003) A gene-coexpression network for global discovery of conserved genetic modules. Science 302(5643):249–255

    Article  CAS  PubMed  Google Scholar 

  74. Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559

    Article  PubMed  PubMed Central  Google Scholar 

  75. Ehlting J et al (2008) An extensive (co-)expression analysis tool for the cytochrome P450 superfamily in Arabidopsis thaliana. BMC Plant Biol 8:47

    Article  PubMed  PubMed Central  Google Scholar 

  76. Opgen-Rhein R, Strimmer K (2007) From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data. BMC Syst Biol 1:37

    Article  PubMed  PubMed Central  Google Scholar 

  77. Ingkasuwan P et al (2012) Inferring transcriptional gene regulation network of starch metabolism in Arabidopsis thaliana leaves using graphical Gaussian model. BMC Syst Biol 6:100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ma SS, Gong QQ, Bohnert HJ (2007) An Arabidopsis gene network based on the graphical Gaussian model. Genome Res 17(11):1614–1625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ma C et al (2014) Machine learning-based differential network analysis: a study of stress-responsive transcriptomes in Arabidopsis. Plant Cell 26(2):520–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Steuer R et al (2002) The mutual information: detecting and evaluating dependencies between variables. Bioinformatics 18:S231–S240

    Article  PubMed  Google Scholar 

  81. Middleton AM et al (2012) Modeling regulatory networks to understand plant development: small is beautiful. Plant Cell 24(10):3876–3891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Perrin BE et al (2003) Gene networks inference using dynamic Bayesian networks. Bioinformatics 19:Ii138–Ii148

    Article  PubMed  Google Scholar 

  83. Alvarez-Buylla ER et al (2008) Floral morphogenesis: stochastic explorations of a gene network epigenetic landscape. PLoS One 3(11):e3626

    Article  PubMed  PubMed Central  Google Scholar 

  84. Espinosa-Soto C, Padilla-Longoria P, Alvarez-Buylla ER (2004) A gene regulatory network model for cell-fate determination during Arabidopsis thaliana flower development that is robust and recovers experimental gene expression profiles. Plant Cell 16(11):2923–2939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lee I et al (2010) Rational association of genes with traits using a genome-scale gene network for Arabidopsis thaliana. Nat Biotechnol 28(2):149–U14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lee I et al (2011) Genetic dissection of the biotic stress response using a genome-scale gene network for rice. Proc Natl Acad Sci U S A 108(45):18548–18553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Alexander-von-Humboldt foundation and the BMBF for support. We apologize to all authors whose work could not be cited due to space constraints.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerstin Kaufmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Kaufmann, K., Chen, D. (2017). From Genes to Networks: Characterizing Gene-Regulatory Interactions in Plants. In: Kaufmann, K., Mueller-Roeber, B. (eds) Plant Gene Regulatory Networks. Methods in Molecular Biology, vol 1629. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7125-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7125-1_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7124-4

  • Online ISBN: 978-1-4939-7125-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics