Skip to main content

Analysis of Brain Phosphoproteome Using Titanium Dioxide Enrichment and High-Resolution LC-MS/MS

  • Protocol
  • First Online:
Current Proteomic Approaches Applied to Brain Function

Part of the book series: Neuromethods ((NM,volume 127))

Abstract

This chapter outlines the process of performing phosphoproteomic studies of brain tissue: brain dissection, protein extraction and digestion, phosphopeptide enrichment, and peptide identification and quantification by LC-MS/MS. We describe a refined method for rapid, simple, and efficient TiO2-based phosphopeptide enrichment that relies on specific binding of the peptidyl phosphate group and TiO2, with free phosphate competitor added to reduce nonspecific binding. Integration of such a robust phosphopeptide enrichment method, powerful high-resolution LC-MS/MS, and multiplex isobaric labeling enables deep profiling of phosphoproteome with high sensitivity from biological samples, such as the human brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Aebersold R, Mann M (2016) Mass-spectrometric exploration of proteome structure and function. Nature 537:347–355

    Article  CAS  PubMed  Google Scholar 

  2. Zhang Y, Fonslow BR, Shan B, Baek MC, Yates JR 3rd (2013) Protein analysis by shotgun/bottom-up proteomics. Chem Rev 113:2343–2394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Macek B, Mann M, Olsen JV (2009) Global and site-specific quantitative phosphoproteomics: principles and applications. Annu Rev Pharmacol Toxicol 49:199–221

    Article  CAS  PubMed  Google Scholar 

  4. Xia Q, Cheng D, Duong DM, Gearing M, Lah JJ, Levey AI, Peng J (2008) Phosphoproteomic analysis of human brain by calcium phosphate precipitation and mass spectrometry. J Proteome Res 7:2845–2851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Xu P, Duong DM, Peng J (2009) Systematical optimization of reverse-phase chromatography for shotgun proteomics. J Proteome Res 8:3944–3950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Edbauer D, Cheng D, Batterton MN, Wang CF, Duong DM, Yaffe MB, Peng J, Sheng M (2009) Identification and characterization of neuronal MAP kinase substrates using a specific phosphomotif antibody. Mol Cell Proteomics 8:681–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tan H, Wu Z, Wang H, Bai B, Li Y, Wang X, Zhai B, Beach TG, Peng J (2015) Refined phosphopeptide enrichment by phosphate additive and the analysis of human brain phosphoproteome. Proteomics 15:500–507

    Article  CAS  PubMed  Google Scholar 

  8. Ficarro SB, McCleland ML, Stukenberg PT, Burke DJ, Ross MM, Shabanowitz J, Hunt DF, White FM (2002) Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat Biotechnol 20:301–305

    Article  CAS  PubMed  Google Scholar 

  9. Nuhse TS, Stensballe A, Jensen ON, Peck SC (2003) Large-scale analysis of in vivo phosphorylated membrane proteins by immobilized metal ion affinity chromatography and mass spectrometry. Mol Cell Proteomics 2:1234–1243

    Article  PubMed  Google Scholar 

  10. Pinkse MW, Uitto PM, Hilhorst MJ, Ooms B, Heck AJ (2004) Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC-ESI-MS/MS and titanium oxide precolumns. Anal Chem 76:3935–3943

    Article  CAS  PubMed  Google Scholar 

  11. Iliuk A, Martinez JS, Hall MC, Tao WA (2011) Phosphorylation assay based on multifunctionalized soluble nanopolymer. Anal Chem 83:2767–2774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ballif BA, Villen J, Beausoleil SA, Schwartz D, Gygi SP (2004) Phosphoproteomic analysis of the developing mouse brain. Mol Cell Proteomics 3:1093–1101

    Article  CAS  PubMed  Google Scholar 

  13. Beausoleil SA, Jedrychowski M, Schwartz D, Elias JE, Villen J, Li J, Cohn MA, Cantley LC, Gygi SP (2004) Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci U S A 101:12130–12135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Motoyama A, Xu T, Ruse CI, Wohlschlegel JA, Yates JR 3rd (2007) Anion and cation mixed-bed ion exchange for enhanced multidimensional separations of peptides and phosphopeptides. Anal Chem 79:3623–3634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Steen H, Kuster B, Fernandez M, Pandey A, Mann M (2002) Tyrosine phosphorylation mapping of the epidermal growth factor receptor signaling pathway. J Biol Chem 277:1031–1039

    Article  CAS  PubMed  Google Scholar 

  16. Pandey A, Podtelejnikov AV, Blagoev B, Bustelo XR, Mann M, Lodish HF (2000) Analysis of receptor signaling pathways by mass spectrometry: identification of vav-2 as a substrate of the epidermal and platelet-derived growth factor receptors. Proc Natl Acad Sci U S A 97:179–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rush J, Moritz A, Lee KA, Guo A, Goss VL, Spek EJ, Zhang H, Zha XM, Polakiewicz RD, Comb MJ (2005) Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat Biotechnol 23:94–101

    Article  CAS  PubMed  Google Scholar 

  18. Larsen MR, Thingholm TE, Jensen ON, Roepstorff P, Jorgensen TJ (2005) Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics 4:873–886

    Article  CAS  PubMed  Google Scholar 

  19. Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127:635–648

    Article  CAS  PubMed  Google Scholar 

  20. Kettenbach AN, Gerber SA (2011) Rapid and reproducible single-stage phosphopeptide enrichment of complex peptide mixtures: application to general and phosphotyrosine-specific phosphoproteomics experiments. Anal Chem 83:7635–7644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang H, Yang Y, Li Y, Bai B, Wang X, Tan H, Liu T, Beach TG, Peng J, Wu Z (2015) Systematic optimization of long gradient chromatography mass spectrometry for deep analysis of brain proteome. J Proteome Res 14:829–838

    Article  CAS  PubMed  Google Scholar 

  22. Eng JK, McCormack AL, Yates JR (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5:976–989

    Article  CAS  PubMed  Google Scholar 

  23. Beausoleil SA, Villen J, Gerber SA, Rush J, Gygi SP (2006) A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat Biotechnol 24:1285–1292

    Article  CAS  PubMed  Google Scholar 

  24. Wang X, Li Y, Wu Z, Wang H, Tan H, Peng J (2014) JUMP: a tag-based database search tool for peptide identification with high sensitivity and accuracy. Mol Cell Proteomics 13:3663–3673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Taus T, Kocher T, Pichler P, Paschke C, Schmidt A, Henrich C, Mechtler K (2011) Universal and confident phosphorylation site localization using phosphoRS. J Proteome Res 10:5354–5362

    Article  CAS  PubMed  Google Scholar 

  26. Mertins P, Yang F, Liu T, Mani DR, Petyuk VA, Gillette MA, Clauser KR, Qiao JW, Gritsenko MA, Moore RJ, Levine DA, Townsend R, Erdmann-Gilmore P, Snider JE, Davies SR, Ruggles KV, Fenyo D, Kitchens RT, Li S, Olvera N, Dao F, Rodriguez H, Chan DW, Liebler D, White F, Rodland KD, Mills GB, Smith RD, Paulovich AG, Ellis M, Carr SA (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13:1690–1704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Oka T, Tagawa K, Ito H, Okazawa H (2011) Dynamic changes of the phosphoproteome in postmortem mouse brains. PLoS One 6:e21405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Futterer CD, Maurer MH, Schmitt A, Feldmann RE Jr, Kuschinsky W, Waschke KF (2004) Alterations in rat brain proteins after desflurane anesthesia. Anesthesiology 100:302–308

    Article  PubMed  Google Scholar 

  29. Ericsson C, Nister M (2011) Protein extraction from solid tissue. Methods Mol Biol 675:307–312

    Article  CAS  PubMed  Google Scholar 

  30. Glatter T, Ludwig C, Ahrne E, Aebersold R, Heck AJ, Schmidt A (2012) Large-scale quantitative assessment of different in-solution protein digestion protocols reveals superior cleavage efficiency of tandem Lys-C/trypsin proteolysis over trypsin digestion. J Proteome Res 11:5145–5156

    Article  CAS  PubMed  Google Scholar 

  31. Chen EI, Cociorva D, Norris JL, Yates JR 3rd (2007) Optimization of mass spectrometry-compatible surfactants for shotgun proteomics. J Proteome Res 6:2529–2538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pirmoradian M, Budamgunta H, Chingin K, Zhang B, Astorga-Wells J, Zubarev RA (2013) Rapid and deep human proteome analysis by single-dimension shotgun proteomics. Mol Cell Proteomics 12:3330–3338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li QR, Ning ZB, Tang JS, Nie S, Zeng R (2009) Effect of peptide-to-TiO2 beads ratio on phosphopeptide enrichment selectivity. J Proteome Res 8:5375–5381

    Article  CAS  PubMed  Google Scholar 

  34. Liu H, Sadygov RG, Yates JR 3rd (2004) A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem 76:4193–4201

    Article  CAS  PubMed  Google Scholar 

  35. Wang W, Zhou H, Lin H, Roy S, Shaler TA, Hill LR, Norton S, Kumar P, Anderle M, Becker CH (2003) Quantification of proteins and metabolites by mass spectrometry without isotopic labeling or spiked standards. Anal Chem 75:4818–4826

    Article  CAS  PubMed  Google Scholar 

  36. Zhou JY, Afjehi-Sadat L, Asress S, Duong DM, Cudkowicz M, Glass JD, Peng J (2010) Galectin-3 is a candidate biomarker for amyotrophic lateral sclerosis: discovery by a proteomics approach. J Proteome Res 9:5133–5141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386

    Article  CAS  PubMed  Google Scholar 

  38. Hebert AS, Merrill AE, Bailey DJ, Still AJ, Westphall MS, Strieter ER, Pagliarini DJ, Coon JJ (2013) Neutron-encoded mass signatures for multiplexed proteome quantification. Nat Methods 10:332–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Werner T, Sweetman G, Savitski MF, Mathieson T, Bantscheff M, Savitski MM (2014) Ion coalescence of neutron encoded TMT 10-plex reporter ions. Anal Chem 86:3594–3601

    Article  CAS  PubMed  Google Scholar 

  40. Thompson A, Schafer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, Neumann T, Hamon C (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75:1895–1904

    Article  CAS  PubMed  Google Scholar 

  41. Ting L, Rad R, Gygi SP, Haas W (2011) MS3 eliminates ratio distortion in isobaric multiplexed quantitative proteomics. Nat Methods 8:937–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. McAlister GC, Nusinow DP, Jedrychowski MP, Wuhr M, Huttlin EL, Erickson BK, Rad R, Haas W, Gygi SP (2014) MultiNotch MS3 enables accurate, sensitive, and multiplexed detection of differential expression across cancer cell line proteomes. Anal Chem 86:7150–7158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Savitski MM, Mathieson T, Zinn N, Sweetman G, Doce C, Becher I, Pachl F, Kuster B, Bantscheff M (2013) Measuring and managing ratio compression for accurate iTRAQ/TMT quantification. J Proteome Res 12:3586–3598

    Article  CAS  PubMed  Google Scholar 

  44. Thompson AJ, Hart SR, Franz C, Barnouin K, Ridley A, Cramer R (2003) Characterization of protein phosphorylation by mass spectrometry using immobilized metal ion affinity chromatography with on-resin beta-elimination and Michael addition. Anal Chem 75:3232–3243

    Article  CAS  PubMed  Google Scholar 

  45. Peng J, Elias JE, Thoreen CC, Licklider LJ, Gygi SP (2003) Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome. J Proteome Res 2:43–50

    Article  CAS  PubMed  Google Scholar 

  46. Elias JE, Gygi SP (2007) Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 4:207–214

    Article  CAS  PubMed  Google Scholar 

  47. Bai B, Hales CM, Chen PC, Gozal Y, Dammer EB, Fritz JJ, Wang X, Xia Q, Duong DM, Street C, Cantero G, Cheng D, Jones DR, Wu Z, Li Y, Diner I, Heilman CJ, Rees HD, Wu H, Lin L, Szulwach KE, Gearing M, Mufson EJ, Bennett DA, Montine TJ, Seyfried NT, Wingo TS, Sun YE, Jin P, Hanfelt J, Willcock DM, Levey A, Lah JJ, Peng J (2013) U1 small nuclear ribonucleoprotein complex and RNA splicing alterations in Alzheimer’s disease. Proc Natl Acad Sci U S A 110:16562–16567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rauniyar N, Yates JR 3rd (2014) Isobaric labeling-based relative quantification in shotgun proteomics. J Proteome Res 13:5293–5309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Drs. Ping-Chung Chen and Yun Jiao for helpful discussion. This work was partially supported by National Institutes of Health grants R01GM114260, R01AG047928, R01AG053987, and ALSAC (American Lebanese Syrian Associated Charities). The MS analysis was performed in the St. Jude Children’s Research Hospital Proteomics Facility, partially supported by NIH Cancer Center Support Grant (P30CA021765).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junmin Peng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Sifford, J.M., Tan, H., Wang, H., Peng, J. (2017). Analysis of Brain Phosphoproteome Using Titanium Dioxide Enrichment and High-Resolution LC-MS/MS. In: Santamaría, E., Fernández-Irigoyen, J. (eds) Current Proteomic Approaches Applied to Brain Function. Neuromethods, vol 127. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7119-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7119-0_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7118-3

  • Online ISBN: 978-1-4939-7119-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics