Skip to main content

Characterization of the Phosphoproteome and Sialoproteome in Brain Tissues by Mass Spectrometry

  • Protocol
  • First Online:
Current Proteomic Approaches Applied to Brain Function

Part of the book series: Neuromethods ((NM,volume 127))

Abstract

Mass spectrometry is an essential tool for the characterization of proteins within neuroscience. The development of faster instruments enables neuroscientists to investigate a large proportion of the proteome in the brain in only short analysis time. Yet, a detailed functional investigation of the intrinsic biochemical processes of the brain by evaluation of the post-translational modifications in proteins is still missing. Phosphorylation and N-linked glycosylation are important protein modifications within the brain as they are involved in neural development, neurotransmission, neurite extension, and synaptic plasticity. Although the importance of these protein modifications is undoubtable for the brain functionality, only a few global protein modification datasets have been generated so far in the neuroscience field. This is due to the higher difficulties to sensitively and specifically enrich these low abundant protein modifications from the high abundant nonmodified peptides and from the very lipid-rich brain material.

Here, we describe how a highly selective, sensitive, low hands-on-time and cost-effective simultaneous enrichment of phosphorylated peptides, sialylated N-linked glycopeptides as well as intact sialylated N-linked glycopeptides and unmodified peptides from the same biological sample can be applied to bridge this gap in neuroscience, exemplified by a proteomic characterization of the murine brain growth spurt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AAA:

Amino acid analysis

ACN:

Acetonitrile

AMPA:

Alpha-amino-2-hydroxy-5-methyl-4-isoxazole propionic acid receptor

CDG:

Congenital disorder of glycosylation

CNS:

Central nervous system

DTT:

Dithiothreitol

HCD:

Higher collisional-induced dissociation

HILIC:

Hydrophilic interaction liquid chromatography

IAA:

Iodoacetamide

IMAC:

Iron metal affinity chromatography

LTD:

Long-term depression

LTP:

Long-term potentiation

MALDI:

Matrix-assisted laser desorption ionization

MeOH:

Methanol

mGluR:

Metabotropic G-protein-coupled glutamate receptor

MS:

Mass spectrometry

nLC-MS/MS:

Nano liquid chromatography-Tandem mass spectrometry

NMDAR:

N-Methyl-d-aspartate receptor

PTM:

Post-translational modification

RT:

Room temperature

SIMAC:

Sequential elution from IMAC

SPE:

Solid phase extraction

TEAB:

Triethylammonium bicarbonate

TFA:

Trifluoroacetic acid

References

  1. Holland BA et al (1986) MRI of normal brain maturation. AJNR Am J Neuroradiol 7(2):201–208

    CAS  PubMed  Google Scholar 

  2. Dobbing J, Sands J (1979) Comparative aspects of the brain growth spurt. Early Hum Dev 3(1):79–83

    Article  CAS  PubMed  Google Scholar 

  3. Huttenlocher PR, Dabholkar AS (1997) Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol 387(2):167–178

    Article  CAS  PubMed  Google Scholar 

  4. Dekaban AS (1978) Changes in brain weights during the span of human life: relation of brain weights to body heights and body weights. Ann Neurol 4(4):345–356

    Article  CAS  PubMed  Google Scholar 

  5. Kelly SJ et al (1988) Impaired spatial navigation in adult female but not adult male rats exposed to alcohol during the brain growth spurt. Behav Brain Res 27(3):247–257

    Article  CAS  PubMed  Google Scholar 

  6. Dobbing J, Sands J (1973) Quantitative growth and development of human brain. Arch Dis Child 48(10):757–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Xin F, Radivojac P (2012) Post-translational modifications induce significant yet not extreme changes to protein structure. Bioinformatics 28(22):2905–2913

    Article  CAS  PubMed  Google Scholar 

  8. Bourne JN, Harris KM (2008) Balancing structure and function at hippocampal dendritic spines. Annu Rev Neurosci 31:47–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bellot A et al (2014) The structure and function of actin cytoskeleton in mature glutamatergic dendritic spines. Brain Res 1573:1–16

    Article  CAS  PubMed  Google Scholar 

  10. Cortes-Mendoza J et al (2013) Shaping synaptic plasticity: the role of activity-mediated epigenetic regulation on gene transcription. Int J Dev Neurosci 31(6):359–369

    Article  CAS  PubMed  Google Scholar 

  11. Bliss TV, Gardner-Medwin AR (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the unanaestetized rabbit following stimulation of the perforant path. J Physiol 232(2):357–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kaibara T, Leung LS (1993) Basal versus apical dendritic long-term potentiation of commissural afferents to hippocampal CA1: a current-source density study. J Neurosci 13(6):2391–2404

    CAS  PubMed  Google Scholar 

  13. Lee HK et al (1998) NMDA induces long-term synaptic depression and dephosphorylation of the GluR1 subunit of AMPA receptors in hippocampus. Neuron 21(5):1151–1162

    Article  CAS  PubMed  Google Scholar 

  14. Colbran RJ (2004) Protein phosphatases and calcium/calmodulin-dependent protein kinase II-dependent synaptic plasticity. J Neurosci 24(39):8404–8409

    Article  CAS  PubMed  Google Scholar 

  15. Freeze HH et al (2012) Neurology of inherited glycosylation disorders. Lancet Neurol 11(5):453–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Scott H, Panin VM (2014) N-glycosylation in regulation of the nervous system. Adv Neurobiol 9:367–394

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kempf SJ et al (2016) An integrated proteomics approach shows synaptic plasticity changes in an APP/PS1 Alzheimer’s mouse model. Oncotarget 7(23):33627–33648

    Article  PubMed  PubMed Central  Google Scholar 

  18. Edwards AV et al (2014) Spatial and temporal effects in protein post-translational modification distributions in the developing mouse brain. J Proteome Res 13(1):260–267

    Article  CAS  PubMed  Google Scholar 

  19. Melo-Braga MN et al (2014) Comprehensive quantitative comparison of the membrane proteome, phosphoproteome, and sialiome of human embryonic and neural stem cells. Mol Cell Proteomics 13(1):311–328

    Article  PubMed  Google Scholar 

  20. Wang B (2012) Molecular mechanism underlying sialic acid as an essential nutrient for brain development and cognition. Adv Nutr 3(3):465s–472s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dityatev A, Schachner M, Sonderegger P (2010) The dual role of the extracellular matrix in synaptic plasticity and homeostasis. Nat Rev Neurosci 11(11):735–746

    Article  CAS  PubMed  Google Scholar 

  22. Dani N, Broadie K (2012) Glycosylated synaptomatrix regulation of trans-synaptic signaling. Dev Neurobiol 72(1):2–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Larsen MR, Thingholm TE, Jensen ON et al (2005) Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics 4:873–886

    Article  CAS  PubMed  Google Scholar 

  24. Thingholm TE, Jensen ON, Robinson PJ, Larsen MR (2008) SIMAC (sequential elution from IMAC), a phosphoproteomics strategy for the rapid separation of monophosphorylated from multiply phosphorylated peptides. Mol Cell Proteomics 7:661–671

    Article  CAS  PubMed  Google Scholar 

  25. Palmisano G, Lendal SE, Engholm-Keller K et al (2010) Selective enrichment of sialic acid-containing glycopeptides using titanium dioxide chromatography with analysis by HILIC and mass spectrometry. Nat Protoc 5:1974–1982

    Article  CAS  PubMed  Google Scholar 

  26. Engholm-Keller K et al (2012) TiSH—a robust and sensitive global phosphoproteomics strategy employing a combination of TiO2, SIMAC, and HILIC. J Proteomics 75(18):5749–5761

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin R. Larsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Ibáñez-Vea, M., Kempf, S.J., Larsen, M.R. (2017). Characterization of the Phosphoproteome and Sialoproteome in Brain Tissues by Mass Spectrometry. In: Santamaría, E., Fernández-Irigoyen, J. (eds) Current Proteomic Approaches Applied to Brain Function. Neuromethods, vol 127. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7119-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7119-0_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7118-3

  • Online ISBN: 978-1-4939-7119-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics