Advertisement

Fibrosis pp 123-137 | Cite as

Modeling Cardiac Fibrosis in Mice: (Myo)Fibroblast Phenotype After Ischemia

  • Daniela Fraccarollo
  • Paolo Galuppo
  • Johann Bauersachs
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1627)

Abstract

Cardiac (myo)fibroblasts play a key role in the regulation of wound healing and pathogenic remodeling after myocardial infarction. Impaired scar formation and alterations of the extracellular matrix network precipitate cardiac dysfunction leading to increased morbidity and mortality. Therapeutic approaches addressing (myo)fibroblast phenotype appear to be useful in preventing progressive structural, electrical, and functional impairment and heart failure.

Permanent ligation of the left anterior descending coronary artery has proven to be a valuable experimental model to investigate the arrays of pathways/mechanisms involved in cardiac repair and extracellular matrix remodeling in ischemic heart failure. Here we describe the surgical procedure to occlude the left coronary artery in mice. Moreover, we present an accurate method to isolate (myo)fibroblasts from ischemic myocardium, with maintenance of the functional phenotype, using the specific marker for mouse cardiac fibroblasts mEF-SK4. The protocol can be completed within a few hours, and the isolated fibroblasts/myofibroblasts are suitable for downstream molecular biology applications, like gene expression profiling and cell culture.

Key words

Myocardial infarction Fibrosis Cardiac fibroblasts mEF-SK4 Fluorescence-activated cell sorting 

References

  1. 1.
    Fraccarollo D, Galuppo P, Bauersachs J (2012) Novel therapeutic approaches to post-infarction remodelling. Cardiovasc Res 94(2):293–303. doi: 10.1093/cvr/cvs109 CrossRefPubMedGoogle Scholar
  2. 2.
    Prabhu SD, Frangogiannis NG (2016) The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis. Circ Res 119(1):91–112. doi: 10.1161/CIRCRESAHA.116.303577 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Travers JG, Kamal FA, Robbins J et al (2016) Cardiac fibrosis: the fibroblast awakens. Circ Res 118(6):1021–1040. doi: 10.1161/CIRCRESAHA.115.306565
  4. 4.
    Howard CM, Baudino TA (2014) Dynamic cell-cell and cell-ECM interactions in the heart. J Mol Cell Cardiol 70:19–26. doi: 10.1016/j.yjmcc.2013.10.006
  5. 5.
    Ma Y, de Castro Bras LE, Toba H et al (2014) Myofibroblasts and the extracellular matrix network in post-myocardial infarction cardiac remodeling. Pflugers Arch 466(6):1113–1127. doi: 10.1007/s00424-014-1463-9 PubMedPubMedCentralGoogle Scholar
  6. 6.
    Turner NA, Porter KE (2013) Function and fate of myofibroblasts after myocardial infarction. Fibrogenesis Tissue Repair 6(1):5. doi: 10.1186/1755-1536-6-5 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Tillmanns J, Hoffmann D, Habbaba Y et al (2015) Fibroblast activation protein alpha expression identifies activated fibroblasts after myocardial infarction. J Mol Cell Cardiol 87:194–203. doi: 10.1016/j.yjmcc.2015.08.016 CrossRefPubMedGoogle Scholar
  8. 8.
    Burchfield JS, Xie M, Hill JA (2013) Pathological ventricular remodeling: mechanisms: part 1 of 2. Circulation 128(4):388–400. doi: 10.1161/CIRCULATIONAHA.113.001878 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Fraccarollo D, Berger S, Galuppo P et al (2011) Deletion of cardiomyocyte mineralocorticoid receptor ameliorates adverse remodeling after myocardial infarction. Circulation 123(4):400–408. doi: 10.1161/CIRCULATIONAHA.110.983023 CrossRefPubMedGoogle Scholar
  10. 10.
    Fraccarollo D, Galuppo P, Motschenbacher S et al (2014) Soluble guanylyl cyclase activation improves progressive cardiac remodeling and failure after myocardial infarction. Cardioprotection over ACE inhibition. Basic Res Cardiol 109(4):421. doi: 10.1007/s00395-014-0421-1 CrossRefPubMedGoogle Scholar
  11. 11.
    Patten RD, Hall-Porter MR (2009) Small animal models of heart failure: development of novel therapies, past and present. Circ Heart Fail 2(2):138–144. doi: 10.1161/CIRCHEARTFAILURE.108.839761 CrossRefPubMedGoogle Scholar
  12. 12.
    Houser SR, Margulies KB, Murphy AM et al (2012) Animal models of heart failure: a scientific statement from the American Heart Association. Circ Res 111(1):131–150. doi: 10.1161/RES.0b013e3182582523 CrossRefPubMedGoogle Scholar
  13. 13.
    Lara-Pezzi E, Menasche P, Trouvin JH et al (2015) Guidelines for translational research in heart failure. J Cardiovasc Transl Res 8(1):3–22. doi: 10.1007/s12265-015-9606-8 CrossRefPubMedGoogle Scholar
  14. 14.
    Yong KW, Li Y, Huang G et al (2015) Mechanoregulation of cardiac myofibroblast differentiation: implications for cardiac fibrosis and therapy. Am J Physiol Heart Circ Physiol 309(4):H532–H542. doi: 10.1152/ajpheart.00299.2015 CrossRefPubMedGoogle Scholar
  15. 15.
    van Putten S, Shafieyan Y, Hinz B (2016) Mechanical control of cardiac myofibroblasts. J Mol Cell Cardiol 93:133–142. doi: 10.1016/j.yjmcc.2015.11.025 CrossRefPubMedGoogle Scholar
  16. 16.
    Rohr S (2011) Cardiac fibroblasts in cell culture systems: myofibroblasts all along? J Cardiovasc Pharmacol 57(4):389–399. doi: 10.1097/FJC.0b013e3182137e17 CrossRefPubMedGoogle Scholar
  17. 17.
    Zhou P, WT P (2016) Recounting cardiac cellular composition. Circ Res 118(3):368–370. doi: 10.1161/CIRCRESAHA.116.308139 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Pinto AR, Ilinykh A, Ivey MJ et al (2016) Revisiting cardiac cellular composition. Circ Res 118(3):400–409. doi: 10.1161/CIRCRESAHA.115.307778 CrossRefPubMedGoogle Scholar
  19. 19.
    O’Connell TD, Rodrigo MC, Simpson PC (2007) Isolation and culture of adult mouse cardiac myocytes. Methods Mol Biol 357:271–296. doi: 10.1385/1-59745-214-9:271 PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Daniela Fraccarollo
    • 1
  • Paolo Galuppo
    • 1
  • Johann Bauersachs
    • 1
  1. 1.Department of Cardiology and AngiologyMedical School HannoverHannoverGermany

Personalised recommendations