Skip to main content

Transplanting Human Skin Grafts onto Nude Mice to Model Skin Scars

  • Protocol
  • First Online:
Fibrosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1627))

Abstract

Hypertrophic scar (HTS) is a common outcome of deep dermal wound healing mainly followed mechanical, chemical, and thermal injuries in the skin. Because of the lack of the most effective prevention and treatment, it is particularly important to establish an ideal dermal animal model for improving the understanding of the pathogenesis and exploring therapeutic approaches of HTS. Compared to other dermal fibrotic animal models in rabbits, red Duroc pigs, guinea pigs, rats, and mice, the approach that uses normal human split-thickness skin grafted onto nude or other immunodeficient mice which develop scars that resemble human HTS offers the advantages of lower cost, easier manipulation, and shorter research period. In this chapter, we will introduce the detailed procedures to create the ideal dermal fibrotic mouse model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ding J, Tredget EE (2015) Cellular and molecular mechanism of dermal fibrosis following burn injury, and exploration of therapeutic approaches. J Aesthet Reconstr Surg 1(1):6. doi:10.4172/2472-1905.10003

    Article  Google Scholar 

  2. Ding J, Tredget EE (2015) The role of chemokines in fibrotic wound healing. Adv Wound Care (New Rochelle) 4(11):673–686. doi:10.1089/wound.2014.0550

    Article  Google Scholar 

  3. Gauglitz GG, Korting HC, Pavicic T et al (2011) Hypertrophic scarring and keloids: pathomechanisms and current and emerging treatment strategies. Mol Med 17(1–2):113–125. doi:10.2119/molmed.2009.00153

    CAS  PubMed  Google Scholar 

  4. Tredget EE, Ding J (2009) Wound healing: from embryos to adults and back again. Lancet 373(9671):1226–1228. doi:10.1016/S0140-6736(09)60705-4

    Article  PubMed  Google Scholar 

  5. Tziotzios C, Profyris C, Sterling J (2012) Cutaneous scarring: pathophysiology, molecular mechanisms, and scar reduction therapeutics part II. Strategies to reduce scar formation after dermatologic procedures. J Am Acad Dermatol 66(1):13–24. doi:10.1016/j.jaad.2011.08.035

  6. Stewart TL, Ball B, Schembri PJ et al (2012) The use of laser Doppler imaging as a predictor of burn depth and hypertrophic scar Postburn injury. J Burn Care Res 33(6):764–771. doi:10.1097/BCR.0b013e318257db36

    Article  PubMed  Google Scholar 

  7. Kwan P, Ding J, Tredget EE (2015) MicroRNA 181b regulates Decorin production by dermal fibroblasts and may be a potential therapy for hypertrophic scar. PLoS One 10(4). doi:10.1371/journal.pone.0123054

  8. Qing C, Wang ZY, Song F et al (2016) Dynamic biological changes in fibroblasts during hypertrophic scar formation and regression. Int Wound J 13(2):257–262. doi:10.1111/iwj.12283

    Article  Google Scholar 

  9. Tredget EE, Yang L, Delehanty M et al (2006) Polarized Th2 cytokine production in patients with hypertrophic scar following thermal injury. J Interf Cytokine Res 26(3):179–189. doi:10.1089/jir.2006.26.179

    Article  CAS  Google Scholar 

  10. Wong VW, Paterno J, Sorkin M et al (2011) Mechanical force prolongs acute inflammation via T-cell-dependent pathways during scar formation. FASEB J 25(12):4498–4510. doi:10.1096/fj.10-178087

    Article  CAS  PubMed  Google Scholar 

  11. Wang J, Hori K, Ding J et al (2011) Toll-like receptors expressed by dermal fibroblasts contribute to hypertrophic scarring. J Cell Physiol 226(5):1265–1273. doi:10.1002/jcp.22454

    Article  CAS  PubMed  Google Scholar 

  12. Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214(2):199–210. doi:10.1002/path.2277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang J, Ding J, Jiao H et al (2011) Human hypertrophic scar-like nude mouse model: characterization of the molecular and cellular biology of the scar process. Wound Repair Regen 19(2):274–285. doi:10.1111/j.1524-475X.2011.00672.x

    Article  PubMed  Google Scholar 

  14. Liu HB, Ding J, Ma ZS et al (2015) A novel subpopulation of peripheral blood mononuclear cells presents in major burn patients. Burns 41(5):998–1007. doi:10.1016/j.burns.2014.12.005

    Article  PubMed  Google Scholar 

  15. Zhu Z, Ding J, Ma Z et al (2016) Systemic depletion of macrophages in the subacute phase of wound healing reduces hypertrophic scar formation. Wound Repair Regen 24(4):644–656. doi:10.1111/wrr.12442

    Article  PubMed  Google Scholar 

  16. Wong VW, Rustad KC, Akaishi S et al (2012) Focal adhesion kinase links mechanical force to skin fibrosis via inflammatory signaling. Nat Med 18(1):148–152. doi:10.1038/nm.2574

    Article  CAS  Google Scholar 

  17. Ding J, Hori K, Zhang R et al (2011) Stromal cell-derived factor 1 (SDF-1) and its receptor CXCR4 in the formation of postburn hypertrophic scar (HTS). Wound Repair Regen 19(5):568–578. doi:10.1111/j.1524-475X.2011.00724.x

  18. Ding J, Ma Z, Liu H et al (2014) The therapeutic potential of a C-X-C chemokine receptor type 4 (CXCR-4) antagonist on hypertrophic scarring in vivo. Wound Repair Regen 22(5):622–630. doi:10.1111/wrr.12208

  19. Ghahary A, Shen YJ, Nedelec B et al (1996) Collagenase production is lower in post-burn hypertrophic scar fibroblasts than in normal fibroblasts and is reduced by insulin-like growth factor-1. J Invest Dermatol 106(3):476–481. doi:10.1111/1523-1747.ep12343658

    Article  CAS  PubMed  Google Scholar 

  20. Scott PG, Dodd CM, Tredget EE et al (1996) Chemical characterization and quantification of proteoglycans in human post-burn hypertrophic and mature scars. Clin Sci (Lond) 90(5):417–425. doi:10.1042/cs0900417

    Article  CAS  Google Scholar 

  21. Nedelec B, Shankowsky H, Scott PG et al (2001) Myofibroblasts and apoptosis in human hypertrophic scars: the effect of interferon-alpha2b. Surgery 130(5):798–808. doi:10.1067/msy.2001.116453

    Article  CAS  PubMed  Google Scholar 

  22. Wang J, Dodd C, Shankowsky HA et al (2008) Deep dermal fibroblasts contribute to hypertrophic scarring. Lab Investig 88(12):1278–1290. doi:10.1038/labinvest.2008.101

    Article  CAS  PubMed  Google Scholar 

  23. Honardoust D, Ding J, Varkey M et al (2012) Deep dermal fibroblasts refractory to migration and decorin-induced apoptosis contribute to hypertrophic scarring. J Burn Care Res 33(5):668–677. doi:10.1097/BCR.0b013e31824088e3

    Article  PubMed  Google Scholar 

  24. Kwan P, Hori K, Ding J et al (2009) Scar and contracture: biological principles. Hand Clin 25(4):511–528. doi:10.1016/j.hcl.2009.06.007

    Article  PubMed  Google Scholar 

  25. Seo BF, Lee JY, Jung SN (2013) Models of abnormal scarring. Biomed Res Int 2013:423147. doi:10.1155/2013/423147

    Article  PubMed  PubMed Central  Google Scholar 

  26. Silverstein P, Goodwin M Jr, Raulston G (1972) Hypertrophic scarring, etiology and control of a disabling complication in burned soldiers. Ann Res Prog Rep US Army Instit Surg Res Sec 37:1–5

    Google Scholar 

  27. Silverstein P, Goodwin MN, Raulston GL et al (1976) Hypertrophic scar in the experimental animal. In: Longacre JJ (ed) The ultrastructure of collagen; its relation to the healing of wounds and to the management of hypertrophic scar. Thomas, Springfield, IL, pp 213–236

    Google Scholar 

  28. Zhu KQ, Engrav LH, Gibran NS et al (2003) The female, red Duroc pig as an animal model of hypertrophic scarring and the potential role of the cones of skin. Burns 29(7):649–664. doi:10.1016/S0305-4179(03)00205-5

    Article  PubMed  Google Scholar 

  29. Zhu KQ, Engrav LH, Tamura RN et al (2004) Further similarities between cutaneous scarring in the female, red Duroc pig and human hypertrophic scarring. Burns 30(6):518–530. doi:10.1016/j.burns.2004.02.005

    Article  PubMed  Google Scholar 

  30. Sood RF, Muffley LA, Seaton ME et al (2015) Dermal fibroblasts from the red Duroc pig have an inherently Fibrogenic phenotype: an in vitro model of Fibroproliferative scarring. Plast Reconstr Surg 136(5):990–1000. doi:10.1097/prs.0000000000001704

  31. Le Provost GS, Pullar CE (2015) beta2-adrenoceptor activation modulates skin wound healing processes to reduce scarring. J Invest Dermatol 135(1):279–288. doi:10.1038/jid.2014.312

    Article  PubMed  Google Scholar 

  32. Gallant CL, Olson ME, Hart DA (2004) Molecular, histologic, and gross phenotype of skin wound healing in red Duroc pigs reveals an abnormal healing phenotype of hypercontracted, hyperpigmented scarring. Wound Repair Regen 12(3):305–319. doi:10.1111/j.1067-1927.2004.012311.x

    Article  PubMed  Google Scholar 

  33. Mustoe TA, Pierce GF, Morishima C et al (1991) Growth factor-induced acceleration of tissue repair through direct and inductive activities in a rabbit dermal ulcer model. J Clin Invest 87(2):694–703. doi:10.1172/jci115048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Morris DE, Wu L, Zhao LL et al (1997) Acute and chronic animal models for excessive dermal scarring: quantitative studies. Plast Reconstr Surg 100(3):674–681

    Article  CAS  PubMed  Google Scholar 

  35. Li Y, Kilani RT, Rahmani-Neishaboor E et al (2014) Kynurenine increases matrix metalloproteinase-1 and -3 expression in cultured dermal fibroblasts and improves scarring in vivo. J Invest Dermatol 134(3):643–650. doi:10.1038/jid.2013.303

  36. Zhang Q, Liu LN, Yong Q et al (2015) Intralesional injection of adipose-derived stem cells reduces hypertrophic scarring in a rabbit ear model. Stem Cell Res Ther 6:145. doi:10.1186/s13287-015-0133-y

    Article  PubMed  PubMed Central  Google Scholar 

  37. Çaliskan E, Gamsizkan M, Açikgoz G et al (2016) Intralesional treatments for hypertrophic scars: comparison among corticosteroid, 5-fluorouracil and botulinum toxin in rabbit ear hypertrophic scar model. Eur Rev Med Pharmacol Sci 20(8):1603–1608

    PubMed  Google Scholar 

  38. Rha EY, Kim YH, Kim TJ et al (2016) Topical application of a silicone gel sheet with verapamil microparticles in a rabbit model of hypertrophic scar. Plast Reconstr Surg 137(1):144–151. doi:10.1097/prs.0000000000001889

    Article  CAS  PubMed  Google Scholar 

  39. Yamamoto T, Takagawa S, Katayama I et al (1999) Animal model of sclerotic skin. I: local injections of bleomycin induce sclerotic skin mimicking scleroderma. J Invest Dermatol 112(4):456–462. doi:10.1046/j.1523-1747.1999.00528.x

    Article  CAS  PubMed  Google Scholar 

  40. Matsushita M, Yamamoto T, Nishioka K (2004) Upregulation of interleukin-13 and its receptor in a murine model of bleomycin-induced scleroderma. Int Arch Allergy Immunol 135(4):348–356. doi:10.1159/000082331

    Article  CAS  PubMed  Google Scholar 

  41. Serratrice N, Bruzzese L, Magalon J et al (2014) New fat-derived products for treating skin-induced lesions of scleroderma in nude mice. Stem Cell Res Ther 5(6):138. doi:10.1186/scrt528

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ruzehaji N, Avouac J, Elhai M et al (2015) Combined effect of genetic background and gender in a mouse model of bleomycin-induced skin fibrosis. Arthritis Res Ther 17:145. doi:10.1186/s13075-015-0659-5

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ohashi T, Yamamoto T (2015) Antifibrotic effect of lysophosphatidic acid receptors LPA1 and LPA3 antagonist on experimental murine scleroderma induced by bleomycin. Exp Dermatol 24(9):698–702. doi:10.1111/exd.12752

    Article  CAS  PubMed  Google Scholar 

  44. Aksoy MH, Vargel I, Canter IH et al (2002) A new experimental hypertrophic scar model in guinea pigs. Aesthet Plast Surg 26(5):388–396. doi:10.1007/s00266-002-1121-z

    Article  Google Scholar 

  45. Rittié L (2016) Cellular mechanisms of skin repair in humans and other mammals. J Cell Commun Signal 10(2):103–120. doi:10.1007/s12079-016-0330-1

    Article  PubMed  PubMed Central  Google Scholar 

  46. Polo M, Kim YJ, Kucukcelebi A et al (1998) An in vivo model of human proliferative scar. J Surg Res 74(2):187–195. doi:10.1006/jsre.1997.5251

  47. Wang X, Smith P, Pu LL et al (1999) Exogenous transforming growth factor beta(2) modulates collagen I and collagen III synthesis in proliferative scar xenografts in nude rats. J Surg Res 87(2):194–200. doi:10.1006/jsre.1999.5757

    Article  CAS  PubMed  Google Scholar 

  48. Hochman B, Vilas Boas FC, Mariano M et al (2005) Keloid heterograft in the hamster (Mesocricetus auratus) cheek pouch, Brazil. Acta Cir Bras 20(3):200–212. doi:S0102-86502005000300003

    Article  PubMed  Google Scholar 

  49. Yang DY, Li SR, Wu JL et al (2007) Establishment of a hypertrophic scar model by transplanting full-thickness human skin grafts onto the backs of nude mice. Plast Reconstr Surg 119(1):104–109. doi:10.1097/01.prs.0000244828.80490.62. discussion 110-101

    Article  CAS  PubMed  Google Scholar 

  50. Momtazi M, Ding J, Kwan P et al (2015) Morphologic and histologic comparison of hypertrophic scar in nude mice, T-cell receptor, and recombination activating gene knockout mice. Plast Reconstr Surg 136(6):1192–1204. doi:10.1097/PRS.0000000000001782

    Article  CAS  PubMed  Google Scholar 

  51. Alrobaie S, Ding J, Ma Z et al (2015) A novel nude mouse model of hypertrophic scarring using scratched full-thickness human skin grafts. Wound Repair Regen 23(4):A2–A2. doi:10.1089/wound.2015.0670

    Google Scholar 

  52. Dunkin CSJ, Pleat JM, Gillespie PH et al (2007) Scarring occurs at a critical depth of skin injury: precise measurement in a graduated dermal scratch in human volunteers. Plast Reconstr Surg 119(6):1722–1732. doi:10.1097/01.prs.0000258829.07399.f0

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by Firefighter’s Burn Trust Fund, Edmonton Civic Employees Research Awards, and University of Alberta Hospital Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward E. Tredget .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Ding, J., Tredget, E.E. (2017). Transplanting Human Skin Grafts onto Nude Mice to Model Skin Scars. In: Rittié, L. (eds) Fibrosis. Methods in Molecular Biology, vol 1627. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7113-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7113-8_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7112-1

  • Online ISBN: 978-1-4939-7113-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics