Skip to main content

Assessing the Effects of Fibrosis on Lung Function by Light Microscopy-Coupled Stereology

  • Protocol
  • First Online:
Book cover Fibrosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1627))

  • 7820 Accesses

Abstract

Pulmonary diseases such as fibrosis are characterized by structural abnormalities that lead to impairment of proper lung function. Stereological analysis of serial tissue sections allows detection and quantitation of subtle changes in lung architecture. Here, we describe a stereology-based method of assessing pathology-induced changes in lung structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weibel ER (2013) It takes more than cells to make a good lung. Am J Respir Crit Care Med 187(4):342–346. doi:10.1164/rccm.201212-2260OE

    Article  CAS  PubMed  Google Scholar 

  2. Hsia CC, Hyde DM, Ochs M et al (2010) An official research policy statement of the American Thoracic Society/European Respiratory Society: standards for quantitative assessment of lung structure. Am J Respir Crit Care Med 181(4):394–418. doi:10.1164/rccm.200809-1522ST

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ferrando RE, Nyengaard JR, Hays SR et al (2003) Applying stereology to measure thickness of the basement membrane zone in bronchial biopsy specimens. J Allergy Clin Immunol 112(6):1243–1245

    Article  PubMed  Google Scholar 

  4. Tschanz SA, Salm LA, Roth-Kleiner M et al (2014) Rat lungs show a biphasic formation of new alveoli during postnatal development. J Appl Physiol (1985) 117(1):89–95. doi:10.1152/japplphysiol.01355.2013

    Article  Google Scholar 

  5. Holm AT, Wulf-Johansson H, Hvidsten S et al (2015) Characterization of spontaneous air space enlargement in mice lacking microfibrillar-associated protein 4. Am J Physiol Lung Cell Mol Physiol 308(11):L1114–L1124. doi:10.1152/ajplung.00351.2014

    Article  CAS  PubMed  Google Scholar 

  6. Schneider JP, Ochs M (2013) Stereology of the lung. Methods Cell Biol 113:257–294. doi:10.1016/B978-0-12-407239-8.00012-4

    Article  PubMed  Google Scholar 

  7. Ochs M, Muhlfeld C (2013) Quantitative microscopy of the lung: a problem-based approach. Part 1: basic principles of lung stereology. Am J Physiol Lung Cell Mol Physiol 305(1):L15–L22. doi:10.1152/ajplung.00429.2012

    Article  CAS  PubMed  Google Scholar 

  8. Hyde DM, Tyler NK, Plopper CG (2007) Morphometry of the respiratory tract: avoiding the sampling, size, orientation, and reference traps. Toxicol Pathol 35(1):41–48. doi:10.1080/01926230601059977

    Article  PubMed  Google Scholar 

  9. Weibel ER, Hsia CC, Ochs M (2007) How much is there really? Why stereology is essential in lung morphometry. J Appl Physiol (1985) 102(1):459–467. doi:10.1152/japplphysiol.00808.2006

    Article  Google Scholar 

  10. Datta A, Scotton CJ, Chambers RC (2011) Novel therapeutic approaches for pulmonary fibrosis. Br J Pharmacol 163(1):141–172. doi:10.1111/j.1476-5381.2011.01247.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Muhlfeld C, Ochs M (2013) Quantitative microscopy of the lung: a problem-based approach. Part 2: stereological parameters and study designs in various diseases of the respiratory tract. Am J Physiol Lung Cell Mol Physiol 305(3):L205–L221. doi:10.1152/ajplung.00427.2012

    Article  PubMed  Google Scholar 

  12. Lutz D, Gazdhar A, Lopez-Rodriguez E et al (2015) Alveolar derecruitment and collapse induration as crucial mechanisms in lung injury and fibrosis. Am J Respir Cell Mol Biol 52(2):232–243. doi:10.1165/rcmb.2014-0078OC

    Article  PubMed  Google Scholar 

  13. Birkelbach B, Lutz D, Ruppert C et al (2015) Linking progression of fibrotic lung remodeling and ultrastructural alterations of alveolar epithelial type II cells in the amiodarone mouse model. Am J Physiol Lung Cell Mol Physiol 309(1):L63–L75. doi:10.1152/ajplung.00279.2014

    Article  CAS  PubMed  Google Scholar 

  14. Muhlfeld C, Knudsen L, Ochs M (2013) Stereology and morphometry of lung tissue. Methods Mol Biol 931:367–390. doi:10.1007/978-1-62703-056-4_18

    Article  PubMed  Google Scholar 

  15. Scherle W (1970) A simple method for volumetry of organs in quantitative stereology. Mikroskopie 26(1):57–60

    CAS  PubMed  Google Scholar 

  16. Michel RP, Cruz-Orive LM (1988) Application of the Cavalieri principle and vertical sections method to lung: estimation of volume and pleural surface area. J Microsc 150(Pt 2):117–136

    Article  CAS  PubMed  Google Scholar 

  17. Sterio DC (1984) The unbiased estimation of number and sizes of arbitrary particles using the disector. J Microsc 134(Pt 2):127–136

    Article  CAS  PubMed  Google Scholar 

  18. Ochs M, Nyengaard JR, Jung A et al (2004) The number of alveoli in the human lung. Am J Respir Crit Care Med 169(1):120–124. doi:10.1164/rccm.200308-1107OC

    Article  PubMed  Google Scholar 

  19. Hyde DM, Tyler NK, Putney LF et al (2004) Total number and mean size of alveoli in mammalian lung estimated using fractionator sampling and unbiased estimates of the Euler characteristic of alveolar openings. Anat Rec A Discov Mol Cell Evol Biol 277(1):216–226. doi:10.1002/ar.a.20012

    Article  CAS  PubMed  Google Scholar 

  20. Schneider JP, Ochs M (2014) Alterations of mouse lung tissue dimensions during processing for morphometry: a comparison of methods. Am J Physiol Lung Cell Mol Physiol 306(4):L341–L350. doi:10.1152/ajplung.00329.2013

    Article  CAS  PubMed  Google Scholar 

  21. Dorph-Petersen KA, Nyengaard JR, Gundersen HJ (2001) Tissue shrinkage and unbiased stereological estimation of particle number and size. J Microsc 204(Pt 3):232–246

    Article  CAS  PubMed  Google Scholar 

  22. Vock R, Weibel ER (1993) Massive hemorrhage causes changes in morphometric parameters of lung capillaries and concentration of leukocytes in microvasculature. Exp Lung Res 19(5):559–577

    Article  CAS  PubMed  Google Scholar 

  23. Cruz-Orive LM, Weibel ER (1990) Recent stereological methods for cell biology: a brief survey. Am J Phys 258(4 Pt 1):L148–L156

    CAS  Google Scholar 

  24. Gundersen HJ, Osterby R (1981) Optimizing sampling efficiency of stereological studies in biology: or ‘do more less well!’. J Microsc 121(Pt 1):65–73

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grith Lykke Sørensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Pilecki, B., Sørensen, G.L. (2017). Assessing the Effects of Fibrosis on Lung Function by Light Microscopy-Coupled Stereology. In: Rittié, L. (eds) Fibrosis. Methods in Molecular Biology, vol 1627. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7113-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7113-8_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7112-1

  • Online ISBN: 978-1-4939-7113-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics