Advertisement

Fibrosis pp 491-509 | Cite as

Spectral Unmixing Methods and Tools for the Detection and Quantitation of Collagen and Other Macromolecules in Tissue Specimens

  • Zachary T. Harmany
  • Farzad Fereidouni
  • Richard M. Levenson
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1627)

Abstract

Collagen and other components in the extracellular matrix are proving of increasing importance for the understanding of complex cell and tissue interactions in a variety of settings. Detection and quantitation of these components can still prove challenging, and a number of techniques have been developed. We focus here on methods in fluorescence-based assessments, including multiplexed immunodetection and the use of simpler histochemical stains, both complemented by linear unmixing techniques. Typically, differentiating these components requires the use of a set of optical filters to isolate each fluorescent compound from each other and from often bright background autofluorescence signals. However, standard fluorescent microscopes are usually only able to separate a limited number of components. If the emission spectra of the fluorophores are spectrally distinct, but overlapping, sophisticated spectral imaging or computational methods can be used to optimize separation and quantitation. This chapter describes spectral unmixing methodology and associated open-source software tools available to analyze multispectral as well as simple color (RGB) images.

Key words

Multispectral imaging Linear unmixing Fluorescent imaging Microscopy Image analysis Spectroscopy 

Notes

Acknowledgments

We acknowledge Nenad Bozinovic for providing the MATLAB code for the UnmixingGUI.

References

  1. 1.
    Mallory FB (1936) The anilin blue collagen stain. Stain Technol 11(3):101–102. doi: 10.3109/10520293609110505 CrossRefGoogle Scholar
  2. 2.
    Eroschenko VP, diFiore MSH (2013) diFiore’s atlas of histology with functional correlations, 12th edn. Wolters Kluwer Health/Lippincott Williams & Wilkins, Philadelphia, PAGoogle Scholar
  3. 3.
    Tadrous PJ (2010) Digital stain separation for histological images. J Microsc 240(2):164–172. doi: 10.1111/j.1365-2818.2010.03390.x CrossRefPubMedGoogle Scholar
  4. 4.
    Turner NJ, Pezzone MA, Brown BN et al (2013) Quantitative multispectral imaging of Herovici’s polychrome for the assessment of collagen content and tissue remodelling. J Tissue Eng Regen Med 7(2):139–148. doi: 10.1002/term.508 CrossRefPubMedGoogle Scholar
  5. 5.
    von der Mark K, von der Mark H, Timpl R et al (1977) Immunofluorescent localization of collagen types I, II, and III in the embryonic chick eye. Dev Biol 59(1):75–85. doi: 10.1016/0012-1606(77)90241-X CrossRefPubMedGoogle Scholar
  6. 6.
    Hendrix MJC, Hay ED, von der Mark K et al (1982) Immunohistochemical localization of collagen types I and II in the developing chick cornea and tibia by electron microscopy. Invest Ophthalmol Vis Sci 22(3):359–375PubMedGoogle Scholar
  7. 7.
    Mendler M, Eich-Bender SG, Vaughan L et al (1989) Cartilage contains mixed fibrils of collagen types II, IX, and XI. J Cell Biol 108(1):191–197. doi: 10.1083/jcb.108.1.191 CrossRefPubMedGoogle Scholar
  8. 8.
    Bautista PA, Yagi Y (2012) Multispectral enhancement towards digital staining. Anal Cell Pathol 35(1):51–55. doi: 10.3233/ACP-2011-0038 CrossRefGoogle Scholar
  9. 9.
    Keikhosravi A, Bredfeldt JS, Sagar MAK et al (2014) Second-harmonic generation imaging of cancer. In: Waters JC, Wittman T (eds) Quantitative imaging in cell biology, Methods in cell biology, vol 123. Academic Press, New York, NY, pp 531–546. doi: 10.1016/B978-0-12-420138-5.00028-8 CrossRefGoogle Scholar
  10. 10.
    Oldenbourg R (1996) A new view on polarization microscopy. Nature 381(27):811–812. doi: 10.1038/381811a0 CrossRefPubMedGoogle Scholar
  11. 11.
    Fuchs KO, Solis O, Tapawan R et al (2003) The effects of an estrogen and glycolic acid cream on the facial skin of postmenopausal women: a randomized histologic study. Cutis 71(6):481–488PubMedGoogle Scholar
  12. 12.
    Shribak M (2015) Polychromatic polarization microscope: bringing colors to a colorless world. Sci Rep 5(17340):1–10. doi: 10.1038/srep17340 Google Scholar
  13. 13.
    Zhou L, El-Deiry WS (2009) Multispectral fluorescence imaging. J Nucl Med 50(10):1563–1566. doi: 10.2967/jnumed.109.063925 CrossRefPubMedGoogle Scholar
  14. 14.
    Mansfield JR (2014) Multispectral imaging: a review of its technical aspects and applications in anatomic pathology. Vet Pathol 51(1):185–210. doi: 10.1177/0300985813506918 CrossRefPubMedGoogle Scholar
  15. 15.
    Shi S-R, Taylor CR (2014) Antigen retrieval in immunohistochemistry. In: McManus LM, Mitchell RN (eds) Pathobiology of human disease: a dynamic encyclopedia of disease mechanisms. Academic Press, New York, NY, pp 3817–3828. doi: 10.1016/B978-0-12-386456-7.07404-9 CrossRefGoogle Scholar
  16. 16.
    Vinod KR, Jones D, Udupa V (2016) A simple and effective heat induced antigen retrieval method. MethodsX 3:315–319. doi: 10.1016/j.mex.2016.04.001 CrossRefGoogle Scholar
  17. 17.
    Fukunaga-Kalabis M, Martinez G, Liu ZJ et al (2006) CCN3 controls 3D spatial localization of melanocytes in the human skin through DDR1. J Cell Biol 175(4):563–569. (see supp figures). doi: 10.1083/jcb.200602132 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Levenson RM, Mansfield JR (2006) Multispectral imaging in biology and medicine: slices of life. Cytometry A 69A(8):748–758. doi: 10.1002/cyto.a.20319 CrossRefGoogle Scholar
  19. 19.
    Levenson RM, Lynch DT, Kobayashi H et al (2008) Multiplexing with multispectral imaging: from mice to microscopy. ILAR J 49(1):78–88. doi: 10.1093/ilar.49.1.78 CrossRefPubMedGoogle Scholar
  20. 20.
    Stack EC, Wang C, Roman KA et al (2014) Multiplexed immunohistochemistry, imaging, and quantitation: a review, with an assessment of Tyramide signal amplification, multispectral imaging and multiplex analysis. Methods 70(1):46–58. doi: 10.1016/j.ymeth.2014.08.016 CrossRefPubMedGoogle Scholar
  21. 21.
    Waters JC (2009) Accuracy and precision in quantitative fluorescence microscopy. J Cell Biol 185(7):1135–1148. doi: 10.1083/jcb.200903097 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Verdaasdonk JS, Lawrimore J, Bloom K (2014) Determining absolute protein numbers by quantitative fluorescence microscopy. In: Waters JC, Wittman T (eds) Quantitative imaging in cell biology, Methods in cell biology, vol 123. Academic Press, New York, NY, pp 347–365. doi: 10.1016/B978-0-12-420138-5.00019-7 CrossRefGoogle Scholar
  23. 23.
    Mansfield JR, Gossage KW, Hoyt CC et al (2005) Autofluorescence removal, multiplexing, and automated analysis methods for in-vivo fluorescence imaging. J Biomed Opt 10(4):041207-041201–041207-041209. doi: 10.1117/1.2032458 CrossRefGoogle Scholar
  24. 24.
    Boardman JW (1994) Geometric mixture analysis of imaging spectrometry data. Paper presented at the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), AugGoogle Scholar
  25. 25.
    Tauler R, Smilde A, Kowalski B (1995) Selectivity, local rank, three-way data analysis and ambiguity in multivariate curve resolution. J Chemometr 9(1):31–58. doi: 10.1002/cem.1180090105 CrossRefGoogle Scholar
  26. 26.
    Bioucas-Dias J, Plaza A, Dobigeon N et al (2012) Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches. IEEE J Sel Top Appl Earth Observ Remote Sens 5(2):354–379. doi: 10.1109/JSTARS.2012.2194696 CrossRefGoogle Scholar
  27. 27.
    Liu W-L, Wang L-W, Chen J-M et al (2016) Application of multispectral imaging in quantitative immunohistochemistry study of breast cancer: a comparative study. Tumour Biol 37(4):5013–5024. doi: 10.1007/s13277-015-4327-9 CrossRefPubMedGoogle Scholar
  28. 28.
    Ruifrok AC, Johnston DA (2001) Quantification of histochemical staining by color deconvolution. Anal Quant Cytol Histol 23(4):291–299PubMedGoogle Scholar
  29. 29.
    Levenson RM, Harmany ZT, Demos SG et al (2016) Slide-free histology via MUSE: UV surface excitation microscopy for imaging unsectioned tissue. Paper presented at the Proceedings of SPIEGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Zachary T. Harmany
    • 1
  • Farzad Fereidouni
    • 1
  • Richard M. Levenson
    • 1
  1. 1.Department of Pathology and Laboratory MedicineUniversity of California-Davis Medical CenterSacramentoUSA

Personalised recommendations