Fibrosis pp 341-350 | Cite as

Collagen Quantification in Tissue Specimens

  • João Quintas Coentro
  • Héctor Capella-Monsonís
  • Valeria Graceffa
  • Zhuning Wu
  • Anne Maria Mullen
  • Michael Raghunath
  • Dimitrios I. ZeugolisEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1627)


Collagen is the major extracellular protein in mammals. Accurate quantification of collagen is essential in the biomaterials (e.g., reproducible collagen scaffold fabrication), drug discovery (e.g., assessment of collagen in pathophysiologies, such as fibrosis), and tissue engineering (e.g., quantification of cell-synthesized collagen) fields. Although measuring hydroxyproline content is the most widely used method to quantify collagen in biological specimens, the process is very laborious. To this end, the Sircol™ Collagen Assay is widely used due to its inherent simplicity and convenience. However, this method leads to overestimation of collagen content due to the interaction of Sirius red with basic amino acids of non-collagenous proteins. Herein, we describe the addition of an ultrafiltration purification step in the process to accurately determine collagen content in tissues.

Key words

Collagen quantification Colorimetric assay Biological specimens Ultrafiltration purification Sirius red 



This work forms part of the Teagasc Walsh Fellowship (Grant Award No. Ref: 2014045) and the ReValueProtein Research Project (Grant Award No. 11/F/043) supported by the Department of Agriculture, Food and the Marine (DAFM) under the National Development Plan 2007–2013 funded by the Irish Government. This work has also been supported from the Health Research Board, Health Research Awards Programme, under the grant agreement number HRA_POR/2011/84 and the Science Foundation Ireland and the European Regional Development Fund (Grant Agreement Number: 13/RC/2073).


  1. 1.
    Zeugolis DI, Paul RG, Attenburrow G (2009) Extruded collagen fibres for tissue-engineering applications: influence of collagen concentration and NaCl amount. J Biomater Sci Polym Ed 20(2):219–234. doi: 10.1163/156856209X404505 CrossRefPubMedGoogle Scholar
  2. 2.
    Perez-Puyana V, Romero A, Guerrero A (2016) Influence of collagen concentration and glutaraldehyde on collagen-based scaffold properties. J Biomed Mater Res A 104(6):1462–1468. doi: 10.1002/jbm.a.35671 CrossRefPubMedGoogle Scholar
  3. 3.
    Satyam A, Kumar P, Fan X et al (2014) Macromolecular crowding meets tissue engineering by self-assembly: a paradigm shift in regenerative medicine. Adv Mater 26(19):3024–3034. doi: 10.1002/adma.201304428 CrossRefPubMedGoogle Scholar
  4. 4.
    Satyam A, Kumar P, Cigognini D et al (2016) Low, but not too low, oxygen tension and macromolecular crowding accelerate extracellular matrix deposition in human dermal fibroblast culture. Acta Biomater 44:221–231. doi: 10.1016/j.actbio.2016.08.008 CrossRefPubMedGoogle Scholar
  5. 5.
    Li Y, Qi Y, Kim MS et al (2008) Increased renal collagen cross-linking and lipid accumulation in nephropathy of Zucker diabetic fatty rats. Diabetes Metab Res Rev 24(6):498–506. doi: 10.1002/dmrr.874 CrossRefPubMedGoogle Scholar
  6. 6.
    Wang Z, Chesler NC (2012) Role of collagen content and cross-linking in large pulmonary arterial stiffening after chronic hypoxia. Biomech Model Mechanobiol 11(1-2):279–289. doi: 10.1007/s10237-011-0309-z CrossRefPubMedGoogle Scholar
  7. 7.
    Bhogal RK, Stoica CM, McGaha TL et al (2005) Molecular aspects of regulation of collagen gene expression in fibrosis. J Clin Immunol 25(6):592–603. doi: 10.1007/s10875-005-7827-3 CrossRefPubMedGoogle Scholar
  8. 8.
    Thoua NM, Derrett-Smith EC, Khan K et al (2012) Gut fibrosis with altered colonic contractility in a mouse model of scleroderma. Rheumatology (Oxford) 51(11):1989–1998. doi: 10.1093/rheumatology/kes191 CrossRefGoogle Scholar
  9. 9.
    Neuman RE, Logan MA (1950) The determination of hydroxyproline. J Biol Chem 184(1):299–306PubMedGoogle Scholar
  10. 10.
    Woessner JF, Jr. (1961) The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. Arch Biochem Biophys 93:440-447. doi: 10.1016/0003-9861(61)90291-0
  11. 11.
    Zeugolis DI, Paul RG, Attenburrow G (2008) Factors influencing the properties of reconstituted collagen fibers prior to self-assembly: animal species and collagen extraction method. J Biomed Mater Res A 86(4):892–904. doi: 10.1002/jbm.a.31694 CrossRefPubMedGoogle Scholar
  12. 12.
    Zeugolis DI, Li B, Lareu RR et al (2008) Collagen solubility testing, a quality assurance step for reproducible electro-spun nano-fibre fabrication. A technical note. J Biomater Sci Polym Ed 19(10):1307–1317. doi: 10.1163/156856208786052344 CrossRefPubMedGoogle Scholar
  13. 13.
    Kumar P, Satyam A, Cigognini D et al (2016) Low oxygen tension and macromolecular crowding accelerate extracellular matrix deposition in human corneal fibroblast culture. J Tissue Eng Regen Med. doi: 10.1002/term.2283 Google Scholar
  14. 14.
    Cigognini D, Gaspar D, Kumar P et al (2016) Macromolecular crowding meets oxygen tension in human mesenchymal stem cell culture – a step closer to physiologically relevant in vitro organogenesis. Sci Rep 6:30746. doi: 10.1038/srep30746
  15. 15.
    Yurovsky VV (2003) Tumor necrosis factor-related apoptosis-inducing ligand enhances collagen production by human lung fibroblasts. Am J Respir Cell Mol Biol 28(2):225–231. doi: 10.1165/rcmb.2002-0140OC CrossRefPubMedGoogle Scholar
  16. 16.
    Wilda H, Gough JE (2006) In vitro studies of annulus fibrosus disc cell attachment, differentiation and matrix production on PDLLA/45S5 Bioglass composite films. Biomaterials 27(30):5220–5229. doi: 10.1016/j.biomaterials.2006.06.008 CrossRefPubMedGoogle Scholar
  17. 17.
    Junqueira LC, Bignolas G, Brentani RR (1979) Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections. Histochem J 11(4):447–455. doi: 10.1007/BF01002772 CrossRefPubMedGoogle Scholar
  18. 18.
    Rabau MY, Dayan D (1994) Polarization microscopy of picrosirius red stained sections: a useful method for qualitative evaluation of intestinal wall collagen. Histol Histopathol 9(3):525–528PubMedGoogle Scholar
  19. 19.
    Lareu RR, Zeugolis DI, Abu-Rub M et al (2010) Essential modification of the Sircol Collagen Assay for the accurate quantification of collagen content in complex protein solutions. Acta Biomater 6(8):3146–3151. doi: 10.1016/j.actbio.2010.02.004 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • João Quintas Coentro
    • 1
    • 2
  • Héctor Capella-Monsonís
    • 1
    • 2
  • Valeria Graceffa
    • 1
    • 2
  • Zhuning Wu
    • 1
    • 2
  • Anne Maria Mullen
    • 3
  • Michael Raghunath
    • 4
  • Dimitrios I. Zeugolis
    • 1
    • 2
    Email author
  1. 1.Regenerative, Modular & Developmental Engineering Laboratory (REMODEL)National University of Ireland GalwayGalwayIreland
  2. 2.Science Foundation Ireland Centre for Research in Medical Devices (CÚRAM)National University of Ireland GalwayGalwayIreland
  3. 3.Teagasc Research CentreDublinIreland
  4. 4.Centre for Cell Biology & Tissue Engineering, Competence Centre Tissue Engineering for Drug Development (TEDD), Department Life Sciences and Facility Management, Institute for Chemistry and Biotechnology (ICBT)Zürich University of Applied SciencesWädenswilSwitzerland

Personalised recommendations