Advertisement

Fibrosis pp 27-42 | Cite as

The Bleomycin Model of Pulmonary Fibrosis

  • Tianju Liu
  • Francina Gonzalez De Los Santos
  • Sem H. Phan
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1627)

Abstract

Interstitial lung disease (ILD) comprises a large number of chronic lung disease characterized by varying degrees of inflammation and fibrosis. Mostly they are idiopathic including idiopathic pulmonary fibrosis (IPF), which is a specific disorder characterized by progressive fibrosis leading commonly to end-stage lung disease, respiratory failure, and fatal outcome. IPF and many of these fibrotic ILDs lack effective therapy despite recent approval of two drugs to slow progression in certain IPF patients. Because there are no natural models for IPF, the use of animal models that reproduce key known features of the disease is warranted. Thus, different animal models have been developed to investigate key mechanisms underlying pathogenesis of pulmonary fibrosis and identify potential therapeutic targets for IPF. While no animal model can recapitulate all features of human disease, several are available to address select features of IPF and other fibrotic ILDs. Historically, among the first to be developed and used widely is the bleomycin model, which is the best-characterized and currently most extensively used animal model due to its ability to reproduce many aspects of IPF and other fibrotic ILDs, good reproducibility, and ease of induction. Studies using the bleomycin model have identified many of the cellular and molecular mechanisms now recognized as being important in pathogenesis of IPF and other fibrotic ILDs, as well as novel therapies for these diseases, including two recent drugs approved for treatment of IPF. This chapter will describe commonly used techniques for induction of the model by endotracheal administration of bleomycin through surgical and nonsurgical (transoral instillation).

Key words

Bleomycin Idiopathic pulmonary fibrosis Mouse Endotracheal instillation 

Notes

Acknowledgments

This work was supported by NIH grants HL052285 and HL112880. We thank Zhe Wu and Lisa Riggs for their excellent technical assistances.

References

  1. 1.
    Gross TJ, Hunninghake GW (2001) Idiopathic pulmonary fibrosis. N Engl J Med 345(7):517–525. doi: 10.1056/NEJMra003200 CrossRefPubMedGoogle Scholar
  2. 2.
    Phan SH (2003) Fibroblast phenotypes in pulmonary fibrosis. Am J Respir Cell Mol Biol 29(3 Suppl):S87–S92PubMedGoogle Scholar
  3. 3.
    Hinz B, Phan SH, Thannickal VJ et al (2007) The myofibroblast: one function, multiple origins. Am J Pathol 170(6):1807–1816. doi: 10.2353/ajpath.2007.070112 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Moeller A, Ask K, Warburton D et al (2008) The bleomycin animal model: a useful tool to investigate treatment options for idiopathic pulmonary fibrosis? Int J Biochem Cell Biol 40(3):362–382. doi: 10.1016/j.biocel.2007.08.011 CrossRefPubMedGoogle Scholar
  5. 5.
    Walters DM, Kleeberger SR (2008) Mouse models of bleomycin-induced pulmonary fibrosis. Curr Protoc Pharmacol Chapter 5:Unit 5.46. doi: 10.1002/0471141755.ph0546s40
  6. 6.
    Moore BB, Hogaboam CM (2008) Murine models of pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 294(2):L152–L160. doi: 10.1152/ajplung.00313.2007 CrossRefPubMedGoogle Scholar
  7. 7.
    Umezawa H, Ishizuka M, Maeda K et al (1967) Studies on bleomycin. Cancer 20(5):891–895CrossRefPubMedGoogle Scholar
  8. 8.
    Umezawa H, Maeda K, Takeuchi T et al (1966) New antibiotics, bleomycin A and B. J Antibiot (Tokyo) 19(5):200–209Google Scholar
  9. 9.
    Yagoda A, Mukherji B, Young C et al (1972) Bleomycin, an antitumor antibiotic. Clinical experience in 274 patients. Ann Intern Med 77(6):861–870CrossRefPubMedGoogle Scholar
  10. 10.
    Blum RH, Carter SK, Agre K (1973) A clinical review of bleomycin – a new antineoplastic agent. Cancer 31(4):903–914Google Scholar
  11. 11.
    Umezawa H (1974) Chemistry and mechanism of action of bleomycin. Fed Proc 33(11):2296–2302PubMedGoogle Scholar
  12. 12.
    Rudders RA, Hensley GT (1973) Bleomycin pulmonary toxicity. Chest 63(4):627–628CrossRefPubMedGoogle Scholar
  13. 13.
    Sostman HD, Matthay RA, Putman CE (1977) Cytotoxic drug-induced lung disease. Am J Med 62(4):608–615CrossRefPubMedGoogle Scholar
  14. 14.
    Onuma T, Holland JF, Masuda H et al (1974) Microbiological assay of bleomycin: inactivation, tissue distribution, and clearance. Cancer 33(5):1230–1238CrossRefPubMedGoogle Scholar
  15. 15.
    Phan SH, Thrall RS, Ward PA (1980) Bleomycin-induced pulmonary fibrosis in rats: biochemical demonstration of increased rate of collagen synthesis. Am Rev Respir Dis 121(3):501–506. doi: 10.1164/arrd.1980.121.3.501 CrossRefPubMedGoogle Scholar
  16. 16.
    Phan SH, Thrall RS, Williams C (1981) Bleomycin-induced pulmonary fibrosis. Effects of steroid on lung collagen metabolism. Am Rev Respir Dis 124(4):428–434. doi: 10.1164/arrd.1981.124.4.428 PubMedGoogle Scholar
  17. 17.
    Phan SH, Thrall RS (1982) The role of soluble factors in bleomycin-induced pulmonary fibrosis. Am J Pathol 106(2):156–164PubMedPubMedCentralGoogle Scholar
  18. 18.
    Fleischman RW, Baker JR, Thompson GR et al (1971) Bleomycin-induced interstitial pneumonia in dogs. Thorax 26(6):675–682CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Adamson IY, Bowden DH (1974) The pathogenesis of bleomycin-induced pulmonary fibrosis in mice. Am J Pathol 77(2):185–197PubMedPubMedCentralGoogle Scholar
  20. 20.
    Snider GL, Hayes JA, Korthy AL (1978) Chronic interstitial pulmonary fibrosis produced in hamsters by endotracheal bleomycin: pathology and stereology. Am Rev Respir Dis 117(6):1099–1108. doi: 10.1164/arrd.1978.117.6.1099 PubMedGoogle Scholar
  21. 21.
    Thrall RS, McCormick JR, Jack RM et al (1979) Bleomycin-induced pulmonary fibrosis in the rat: inhibition by indomethacin. Am J Pathol 95(1):117–130PubMedPubMedCentralGoogle Scholar
  22. 22.
    Organ L, Bacci B, Koumoundouros E et al (2015) Structural and functional correlations in a large animal model of bleomycin-induced pulmonary fibrosis. BMC Pulm Med 15:81. doi: 10.1186/s12890-015-0071-6 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Chandler DB, Hyde DM, Giri SN (1983) Morphometric estimates of infiltrative cellular changes during the development of bleomycin-induced pulmonary fibrosis in hamsters. Am J Pathol 112(2):170–177PubMedPubMedCentralGoogle Scholar
  24. 24.
    Lown JW, Sim SK (1977) The mechanism of the bleomycin-induced cleavage of DNA. Biochem Biophys Res Commun 77(4):1150–1157. doi: 10.1016/S0006-291X(77)80099-5 CrossRefPubMedGoogle Scholar
  25. 25.
    Claussen CA, Long EC (1999) Nucleic acid recognition by metal complexes of bleomycin. Chem Rev 99(9):2797–2816. doi: 10.1002/chin.199948318 CrossRefPubMedGoogle Scholar
  26. 26.
    Liu T, Chung MJ, Ullenbruch M et al (2007) Telomerase activity is required for bleomycin-induced pulmonary fibrosis in mice. J Clin Invest 117(12):3800–3809. doi: 10.1172/JCI32369 PubMedPubMedCentralGoogle Scholar
  27. 27.
    Usuki J, Fukuda Y (1995) Evolution of three patterns of intra-alveolar fibrosis produced by bleomycin in rats. Pathol Int 45(8):552–564. doi: 10.1111/j.1440-1827.1995.tb03503.x CrossRefPubMedGoogle Scholar
  28. 28.
    Munger JS, Huang X, Kawakatsu H et al (1999) The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 96(3):319–328. S0092-8674(00)80545-0 [pii]CrossRefPubMedGoogle Scholar
  29. 29.
    Bauer Y, Tedrow J, de Bernard S et al (2015) A novel genomic signature with translational significance for human idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol 52(2):217–231. doi: 10.1165/rcmb.2013-0310OC CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Wollin L, Wex E, Pautsch A et al (2015) Mode of action of nintedanib in the treatment of idiopathic pulmonary fibrosis. Eur Respir J 45(5):1434–1445. doi: 10.1183/09031936.00174914 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    King CS, Nathan SD (2015) Practical considerations in the pharmacologic treatment of idiopathic pulmonary fibrosis. Curr Opin Pulm Med 21(5):479–489. doi: 10.1097/MCP.0000000000000190 CrossRefPubMedGoogle Scholar
  32. 32.
    Grimminger F, Gunther A, Vancheri C (2015) The role of tyrosine kinases in the pathogenesis of idiopathic pulmonary fibrosis. Eur Respir J 45(5):1426–1433. doi: 10.1183/09031936.00149614 CrossRefPubMedGoogle Scholar
  33. 33.
    Iyer SN, Wild JS, Schiedt MJ et al (1995) Dietary intake of pirfenidone ameliorates bleomycin-induced lung fibrosis in hamsters. J Lab Clin Med 125(6):779–785PubMedGoogle Scholar
  34. 34.
    Mackinnon AC, Gibbons MA, Farnworth SL et al (2012) Regulation of transforming growth factor-beta1-driven lung fibrosis by galectin-3. Am J Respir Crit Care Med 185(5):537–546. doi: 10.1164/rccm.201106-0965OC CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Peters DM, Vadasz I, Wujak L et al (2014) TGF-beta directs trafficking of the epithelial sodium channel ENaC which has implications for ion and fluid transport in acute lung injury. Proc Natl Acad Sci U S A 111(3):E374–E383. doi: 10.1073/pnas.1306798111 CrossRefPubMedGoogle Scholar
  36. 36.
    Sebti SM, Mignano JE, Jani JP et al (1989) Bleomycin hydrolase: molecular cloning, sequencing, and biochemical studies reveal membership in the cysteine proteinase family. Biochemistry 28(16):6544–6548CrossRefPubMedGoogle Scholar
  37. 37.
    Phan SH, Kunkel SL (1992) Lung cytokine production in bleomycin-induced pulmonary fibrosis. Exp Lung Res 18(1):29–43. doi: 10.3109/01902149209020649 CrossRefPubMedGoogle Scholar
  38. 38.
    Haston CK, Amos CI, King TM et al (1996) Inheritance of susceptibility to bleomycin-induced pulmonary fibrosis in the mouse. Cancer Res 56(11):2596–2601PubMedGoogle Scholar
  39. 39.
    Thannickal VJ (2013) Mechanistic links between aging and lung fibrosis. Biogerontology 14(6):609–615. doi: 10.1007/s10522-013-9451-6 CrossRefPubMedGoogle Scholar
  40. 40.
    Degryse AL, Tanjore H, XC X et al (2010) Repetitive intratracheal bleomycin models several features of idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 299(4):L442–L452. doi: 10.1152/ajplung.00026.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Peng R, Sridhar S, Tyagi G et al (2013) Bleomycin induces molecular changes directly relevant to idiopathic pulmonary fibrosis: a model for “active” disease. PLoS One 8(4):e59348. doi: 10.1371/journal.pone.0059348 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Williamson JD, Sadofsky LR, Hart SP (2015) The pathogenesis of bleomycin-induced lung injury in animals and its applicability to human idiopathic pulmonary fibrosis. Exp Lung Res 41(2):57–73. doi: 10.3109/01902148.2014.979516 CrossRefPubMedGoogle Scholar
  43. 43.
    Chua F, Gauldie J, Laurent GJ (2005) Pulmonary fibrosis: searching for model answers. Am J Respir Cell Mol Biol 33(1):9–13. doi: 10.1165/rcmb.2005-0062TR CrossRefPubMedGoogle Scholar
  44. 44.
    Borzone G, Moreno R, Urrea R et al (2001) Bleomycin-induced chronic lung damage does not resemble human idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 163(7):1648–1653. doi: 10.1164/ajrccm.163.7.2006132 CrossRefPubMedGoogle Scholar
  45. 45.
    Lawson WE, Polosukhin VV, Stathopoulos GT et al (2005) Increased and prolonged pulmonary fibrosis in surfactant protein C-deficient mice following intratracheal bleomycin. Am J Pathol 167(5):1267–1277. doi: 10.1016/S0002-9440(10)61214-X CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Della Latta V, Cecchettini A, Del Ry S et al (2015) Bleomycin in the setting of lung fibrosis induction: from biological mechanisms to counteractions. Pharmacol Res 97:122–130. doi: 10.1016/j.phrs.2015.04.012 CrossRefPubMedGoogle Scholar
  47. 47.
    Limjunyawong N, Mitzner W, Horton MR (2014) A mouse model of chronic idiopathic pulmonary fibrosis. Physiol Rep 2(2):e00249. doi: 10.1002/phy2.249 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Foster WM, Walters DM, Longphre M et al (2001) Methodology for the measurement of mucociliary function in the mouse by scintigraphy. J Appl Physiol (1985) 90(3):1111–1117Google Scholar
  49. 49.
    Hu B, Wu Z, Nakashima T et al (2012) Mesenchymal-specific deletion of C/EBPbeta suppresses pulmonary fibrosis. Am J Pathol 180(6):2257–2267. doi: 10.1016/j.ajpath.2012.02.010 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Chaudhary NI, Schnapp A, Park JE (2006) Pharmacologic differentiation of inflammation and fibrosis in the rat bleomycin model. Am J Respir Crit Care Med 173(7):769–776. doi: 10.1164/rccm.200505-717OC CrossRefPubMedGoogle Scholar
  51. 51.
    Phan SH, Armstrong G, Sulavik MC et al (1983) A comparative study of pulmonary fibrosis induced by bleomycin and an O2 metabolite producing enzyme system. Chest 83(5 Suppl):44S–45S. doi: 10.1378/chest.83.5.44S CrossRefPubMedGoogle Scholar
  52. 52.
    Schrier DJ, Kunkel RG, Phan SH (1983) The role of strain variation in murine bleomycin-induced pulmonary fibrosis. Am Rev Respir Dis 127(1):63–66. doi: 10.1164/arrd.1983.127.1.63 CrossRefPubMedGoogle Scholar
  53. 53.
    Scotton CJ, Chambers RC (2010) Bleomycin revisited: towards a more representative model of IPF? Am J Physiol Lung Cell Mol Physiol 299(4):L439–L441. doi: 10.1152/ajplung.00258.2010 CrossRefPubMedGoogle Scholar
  54. 54.
    Mouratis MA, Aidinis V (2011) Modeling pulmonary fibrosis with bleomycin. Curr Opin Pulm Med 17(5):355–361. doi: 10.1097/MCP.0b013e328349ac2b CrossRefPubMedGoogle Scholar
  55. 55.
    Degryse AL, Lawson WE (2011) Progress toward improving animal models for idiopathic pulmonary fibrosis. Am J Med Sci 341(6):444–449. doi: 10.1097/MAJ.0b013e31821aa000 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Gharaee-Kermani M, Ullenbruch M, Phan SH (2005) Animal models of pulmonary fibrosis. Methods Mol Med 117:251–259. doi: 10.1385/1-59259-940-0:251 PubMedGoogle Scholar
  57. 57.
    Liu T, Dhanasekaran SM, Jin H et al (2004) FIZZ1 stimulation of myofibroblast differentiation. Am J Pathol 164(4):1315–1326. doi: 10.1016/S0002-9440(10)63218-X CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Gharaee-Kermani M, Hatano K, Nozaki Y et al (2005) Gender-based differences in bleomycin-induced pulmonary fibrosis. Am J Pathol 166(6):1593–1606. doi: 10.1016/S0002-9440(10)62470-4 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Liu T, Jin H, Ullenbruch M et al (2004) Regulation of found in inflammatory zone 1 expression in bleomycin-induced lung fibrosis: role of IL-4/IL-13 and mediation via STAT-6. J Immunol 173(5):3425–3431. doi: 10.4049/jimmunol.173.5.3425 CrossRefPubMedGoogle Scholar
  60. 60.
    Liu T, Yu H, Ding L et al (2015) Conditional knockout of telomerase reverse transcriptase in mesenchymal cells impairs mouse pulmonary fibrosis. PLoS One 10(11):e0142547. doi: 10.1371/journal.pone.0142547 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Choi JE, Lee SS, Sunde DA et al (2009) Insulin-like growth factor-I receptor blockade improves outcome in mouse model of lung injury. Am J Respir Crit Care Med 179(3):212–219. doi: 10.1164/rccm.200802-228OC CrossRefPubMedGoogle Scholar
  62. 62.
    Koh RY, Lim CL, Uhal BD et al (2015) Inhibition of transforming growth factor-beta via the activin receptor-like kinase-5 inhibitor attenuates pulmonary fibrosis. Mol Med Rep 11(5):3808–3813. doi: 10.3892/mmr.2015.3193 PubMedGoogle Scholar
  63. 63.
    Huang WT, Akhter H, Jiang C et al (2015) Plasminogen activator inhibitor 1, fibroblast apoptosis resistance, and aging-related susceptibility to lung fibrosis. Exp Gerontol 61:62–75. doi: 10.1016/j.exger.2014.11.018 CrossRefPubMedGoogle Scholar
  64. 64.
    Dutta S, Sengupta P (2016) Men and mice: relating their ages. Life Sci 152:244–248. doi: 10.1016/j.lfs.2015.10.025 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Tianju Liu
    • 1
  • Francina Gonzalez De Los Santos
    • 1
  • Sem H. Phan
    • 1
  1. 1.Department of PathologyUniversity of Michigan Medical SchoolAnn ArborUSA

Personalised recommendations